Skip to main content

Advertisement

Log in

Genetic diversity of Caragana species of the Ordos Plateau in China

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Plants of the genus Caragana (Fabaceae) are dominant shrub species of high ecological and economic importance on the Ordos Plateau in China. Due to natural environmental variability and anthropogenic impacts, Caragana pastures have experienced severe degradation, which has decreased their carrying capacity. In this study, we investigated the genetic diversity of eight Caragana species (C. purdomii, C. opulens, C. stenophylla, C. intermedia, C. korshinskii, C. roborovskyi, C. tibetica and C. brachypoda) on the Ordos Plateau by using ISSR markers. The results reveal high genetic diversity of all the species, with the percentage of polymorphic bands (PPB) reaching 100%. However, interspecific differences in genetic diversity within the genus were significant, as indicated by higher levels of genetic diversity of C. stenophylla, C. tibetica, C. intermedia, C. korshinskii and C. roborovskyi (PPB > 86%) when compared to the C. brachypoda with the lowest genetic diversity (PPB = 42.86%). Caragana brachypoda showed the lowest genetic similarity with and largest genetic distance from other taxa of the genus. Caragana tibetica had higher genetic diversity than C. roborovskyi. A large genetic distance was found between C. roborovskyi and C. tibetica, although the two species belong to Ser. Tragacanthoides and grow in a semidesert area. Such differences in genetic structure may be the reason for large areas occupied by C. tibetica, whereas C. roborovsky has rather limited distribution in the semidesert area. Caragana intermedia had high genetic diversity and a large genetic differentiation between intraspecific populations implying strong adaptability of the species to environmental fluctuations and selection capabilities. There was an obvious gene flow between C. intermedia and C. korshinskii, suggesting possible hybridization between these species is consistent with ecological variability, which may be important characteristics of Caragana plants in terms of molecular variation in the ecotone of Ordos plateau. Our results provide a molecular basis for sustainable management, utilization and conservation of Caragana plants on the Ordos plateau.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Archibald JK, Crawford DJ, Santos-Guerra A, Mort ME (2006) The utility of automated analysis of inter-simple sequence repeat (ISSR) loci for resolving relationships in the Canary Island species of Tolpis (Asteraceae). Am J Bot 93:1154–1162

    Article  PubMed  CAS  Google Scholar 

  • Beebee T, Rowe G (2003) An introduction to molecular ecology. Oxford university press, New York

    Google Scholar 

  • Borent B, Branchard M (2001) Nonanchored inter simple sequence repeat (ISSR) markers: reproducible and specific tools for genome fingerprinting. Plant Mol Biol Rep 19:209–215

    Article  Google Scholar 

  • Bussell JD, Waycott M, Chappill JA (2005) Arbitrarily amplified DNA markers as characters for phylogenetic inference. Perspect Plant Ecol 7:3–26

    Article  Google Scholar 

  • Chai XY, Chen SL, Xu W (2010) Using inter-simple sequence repeat markers to analyze the genetic structure of natural Pteroceltis tatarinowii populations and implications for species conservation. Plant Syst Evol 285:65–73

    Article  CAS  Google Scholar 

  • Chang ZY, Zhang ML (1997) Anatomical structures of young stems and leaves of some Caragana species with their ecological adaptabilities. Bull Bot Res 17:66–71

    Google Scholar 

  • Chen XD, Dong XJ, Chen ZX (1999) Shrub diversity and its restoration ecology in Ordus Plateau Sandland. In: Ma KP (ed) Ecosystem diversity in key areas of China. Zhejiang Science and Technology Press, Hangzhou, pp 109–153

    Google Scholar 

  • Dhiraj N, Durgeshwer S, Varsha V, Sharayu P, Sujata B (2009) Assessment of morphological and genetic diversity in Gmelina arborea Roxb. New For 38:99–115

    Article  Google Scholar 

  • Dormer EJ (1945) An investigation of the taxonomic value of shoot structure with special references of the Leguminosae. Annu Bot N S 9:141–161

    Google Scholar 

  • Doyle J (1999) DNA protocols for plants—CTAB total DNA isolation. In: Hewitt GM, Johnston A (eds) Molecular techniques in taxonomy. Springer, Berlin, pp 283–293

    Google Scholar 

  • Editorial Committee of Flora Reipublicae Popular Sinicae, Chinese Academy of Science (1993) Flora of China (42 vol part 1). Science Press, Beijing, pp 13–67

    Google Scholar 

  • Esselman EJ, Li JQ, Crawford DJ, Winduss JL, Wolfe AD (1999) Clonal diversity in the rare Calamagrostis porteri ssp. insperata (Poaceae): comparative results for allozymes and random amplified polymorphic DNA (RAPD) and intersimple sequence repeat (ISSR) markers. Mol Ecol 8:443–451

    Article  CAS  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    PubMed  CAS  Google Scholar 

  • Felsenstein J (2005) PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle

  • Gepts P (1993) The use of molecular and biochemical markers in crop-evaluation studies. In: Hecht MK (ed) Evolutionary biology, vol 27. Plenum Press, New York, pp 51–94

    Chapter  Google Scholar 

  • Gorbunova NN (1984) De generis Caragana Lam. (Fabaceae) notae systematicae. Nov Sist Vyssh Rast 21:92–100

    Google Scholar 

  • Guo HY, Gao YB, Ma CC, Ren AZ, Wu JB, Wang YH (2008a) Genetic diversity and genetic relationship of Caragana microphylla, Caragana davazamcii and Caragana korshinskii in Inner Mongolia Plateau. Acta Ecologica Sinica 28:3729–3736

    Article  CAS  Google Scholar 

  • Guo Q, Shi YJ, Wei ZW, Yang ZH, Lu J, Jia YQ (2008b) Genetic diversity analysis by SSR marker of fourteen species of Caragana Fabr. in He-Xi corridor area of Gansu. Acta Agrestia Sinica 16:227–233

    CAS  Google Scholar 

  • Harrison S (1991) Local extinction in a metapopulation context: an empirical evaluation. Biol J Linn Soc 42:73–88

    Article  Google Scholar 

  • Holderegger R, Kamm U, Gugerli F (2006) Adaptive vs. neutral genetic diversity: implications for landscape genetics. Landscape Ecol 21:797–807

    Article  Google Scholar 

  • Jiang HQ (2004) Plants ecology. Higher Education Press, Beijing

    Google Scholar 

  • Komarov VL (1908) Generis Caragana monographia. Acta Horti Petrop 29:77–388

    Google Scholar 

  • Komarov VL (1945) VL Komarov Opera Selecta. Academic Science Press URSS, Moscow, pp 159–342

    Google Scholar 

  • Kumar RS, Parthiban KT, Rao MG (2009) Molecular characterization of Jatropha genetic resources through inter-simple sequence repeat (ISSR) markers. Mol Biol Rep 36:1951–1956

    Article  Google Scholar 

  • Li B (1990) Natural resources and environment research in Ordos Plateau. Science Press, Beijing

    Google Scholar 

  • Li XR (1997) The characteristics of the flora of the shrub resource in Maowusu Sandland and the countermeasures for their protection. J Nat Resour 12:146–152

    Google Scholar 

  • Li XR (2000) Discussion on the characteristics of shrubby diversity of Ordos plateau. Resour Sci 22:54–59

    CAS  Google Scholar 

  • Ma YQ (1989) Flora of Inner Mongolia, vol 3, 2nd edn. The Peoples Press of Inner Mongolia, Hohhot

    Google Scholar 

  • Ma CC, Gao YB, Liu HF (2003) Interspecific transition among Caragana microphylla, C. davazamcii and C. korshinskii along geographic gradient. I. Ecological and RAPD evidence. Acta Botanica Sinica 45:1218–1227

    Google Scholar 

  • Mu LQ, Liu YN (2007) Genetic diversity of Tilia amurensis populations in different geographical distribution regions. J Plant Ecol 31:1190–1198

    CAS  Google Scholar 

  • Naima G, Marie M, Jean-Marie J, Sidi-Mohamed O, Leila M, Jean-Pierre B (2010) Morphological and molecular diversity within Algerian cowpea (Vigna unguiculata (L.) Walp.) landraces. Genet Resour Crop Evol 57:371–386

    Article  Google Scholar 

  • Nei M (1972) Genetic distance between populations. Am Nat 106:282–292

    Article  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323

    Article  PubMed  CAS  Google Scholar 

  • Pritchard JK, Stephens P, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Qian W, Ge S, Hong DY (2001) Genetic variation within and among populations of a wild rice Oryza granulata from China detected by RAPD and ISSR markers. Theor Appl Genet 102:440–449

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Slatkin M (1985) Gene flow in natural populations. Annu Rev Ecol Evol S 16:393–430

    Article  Google Scholar 

  • Song ZQ, Wang JH, Wang HG, Wang MM, Xie YL (2008) Genetic diversity of different eco-geographical populations in Salvia miltiorrhiza revealed by ISSR Markers in Shandong, China. Acta Ecologica Sinica 28:5370–5376

    CAS  Google Scholar 

  • Wei W, Wang HX, Hu ZA et al (1999) Primary studies on molecular ecology of Caragana spp. populations distributed over Maowusu Sand Grassland: from RAPD data. Acta Ecologica Sinica 19:16–22

    Google Scholar 

  • Wu ZY (1980) Vegetation of China. Science Press, Beijing

    Google Scholar 

  • Yang HY, Li N, Ma Q (1990) The floristic analysis of genus Caragana. Bull Bot Res 10:93–99

    Google Scholar 

  • Yeh FC, Yang RC, Boyle T (1999) POPGENE: microsoft window-based freeware for population genetic analysis. Release 1.31. University of Alberta, Edmonton

    Google Scholar 

  • Zhang ML (1997a) The geographic distribution of the genus Caragana in Qinghai-Xizang plateau and Himalayas. Acta Phytotaxonomica Sinica 35:136–147

    Google Scholar 

  • Zhang ML (1997b) A reconstructing phylogeny in Caragana (Fabaceae). Acta Botanica Yunnanica 19:331–341

    Google Scholar 

  • Zhang ML (1998) A preliminary analytic biogeography in Caragana (Fabaceae). Acta Botanica Yunnan 20:1–11

    CAS  Google Scholar 

  • Zhang ML (2005) A dispersal and vicariance analysis of the genus Caragana Fabr. J Integr Plant Biol 47:897–904

    Article  Google Scholar 

  • Zhang ML, Tian XY, Ning JC (1996) Pollen morphology and its taxonomic significance of Caragana Fabr. (Fabaceae) from China. Acta Phytotaxonomica Sinica 34:397–409

    Google Scholar 

  • Zhang ML, Huang YM, Kang Y et al (2002) Floristics and vegetation of the genus Caragana in Ordos plateau. Bull Bot Res 22:497–502

    Google Scholar 

  • Zhao YZ (1991) Classification and eco-geographical distribution of Cargana in Nei Mongol. Acta Scientiarum Naturalium Universitatis Neimongol 22:264–273

    Google Scholar 

  • Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20:176–183

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Science Foundation of Ministry of Science and Technology of China (2011BAC07B01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Yang, J., Yang, M. et al. Genetic diversity of Caragana species of the Ordos Plateau in China. Plant Syst Evol 298, 801–809 (2012). https://doi.org/10.1007/s00606-012-0591-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-012-0591-y

Keywords

Navigation