Skip to main content
Log in

Structural karyotypic variability and polyploidy in natural populations of the South American Lathyrus nervosus Lam. (Fabaceae)

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Knowledge of the chromosome variation in wild populations is essential to understand the pathways and restrictions of karyotype evolution in plants. The aim of this study is to conduct an intraspecific analysis of the karyotypes by fluorochrome banding and ribosomal DNA (rDNA) loci detection by fluorescent in situ hybridization (FISH) and of the meiotic behaviour in natural populations of Lathyrus nervosus, sect. Notolathyrus. Chromosome banding showed that, despite the high constancy in the karyotype formula and in the rDNA loci among populations, there is intraspecific variation in the amount and distribution pattern of 4’,6-diamidino-2-phenylindole (DAPI+) heterochromatin. However, those changes were not related to the total chromosome length of the haploid complements. This fact demonstrates that structural chromosome changes may be one of the most important mechanisms for karyotype variation among natural populations of L. nervosus. The chromosome number surveyed at the population level revealed the first case of polyploidy in South American species and the first case of uneven polyploidy of the genus. All the chromosome markers analysed indicated that the polyploids found originated by autopolyploidy. The meiotic analysis showed different chromosome abnormalities that may be generating numerical and structural changes in the sporads. The finding of unreduced gametes that are alive at anthesis suggests sexual polyploidization as the most probable mechanism involved in the origin of these 3x and 4x autopolyploid cytotypes in L. nervosus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ali HBM, Meister A, Schubert I (2000) DNA content, rDNA loci, and DAPI bands reflect the phylogenetic distance between Lathyrus species. Genome 43:1027–1032

    PubMed  CAS  Google Scholar 

  • Badr SF (2007) Karyotype analysis and chromosome evolution in species of Lathyrus (Fabaceae). Pak J Biol Sci 10:49–56

    Article  PubMed  Google Scholar 

  • Battaglia E (1955) Chromosome morphology and terminology. Caryologia 8:179–187

    Google Scholar 

  • Battistin A, Fernández A (1994) Karyotypes of four species of South America natives and one cultivated species of Lathyrus L. Caryologia 47:325–330

    Google Scholar 

  • Bennett MD, Gustafson JP, Smith JB (1977) Variation in nuclear DNA in the genus Secale. Chromosoma 61:149–176

    Article  CAS  Google Scholar 

  • Bhattacharjee SK (1954) Cytogenetics of Lathyrus sativus Linn. Caryologia 6:333–337

    Google Scholar 

  • Bowen CC (1956) Freezing by liquid carbon dioxide in making slides permanent. Stain Technol 31:87–90

    PubMed  CAS  Google Scholar 

  • Bretagnolle F, Thompson JD (1995) Gametes with the somatic chromosome number: mechanisms of their formation and role in the evolution of autopolyploid plants. New Phytol 129:1–22

    Article  Google Scholar 

  • Burkart A (1938) Revisión de las especies de Lathyrus de la República Argentina. Revista Fac Agron Univ Nac La Plata 8:41–128

    Google Scholar 

  • Burkart A (1942) Nuevas contribuciones a la sistemática de las especies sudamericanas de Lathyrus. Darwiniana 6:9–29

    Google Scholar 

  • Cabral JS, Felix LP, Guerra M (2006) Heterochromatin diversity and its co-localization with 5S and 45S rDNA sites in chromosomes of four Maxillaria species (Orchidaceae). Genet Mol Biol 29:659–664

    Article  Google Scholar 

  • Darlington CD (1937) Recent advances in cytology. Blakiston’s Son & Co. Inc., Philadelphia

  • Darlington CD (1965) Cytology. JA Churchill, London

    Google Scholar 

  • Datta PC (1955) Studies on the structure and behavior of chromosomes of a few species of the genus Lathyrus as means of detecting the interrelations. Genet Iber 8:85–115

    Google Scholar 

  • Defani-Scoarize MA, Pagliarini MS, Aguiar CG (1995) Evaluation of meiotic behavior in double-cross maize hybrids and their parents. Maydica 40:319–324

    Google Scholar 

  • Dewitte A, Eackhaut T, Van Huylenbroeck J, Van Bockstaele E (2010) Meiotic aberrations during 2n pollen formation in Begonia. Heredity 104:215–223

    Article  PubMed  CAS  Google Scholar 

  • Dorman ER, Bushey AM, Corces VG (2007) The role of insulator elements in large-scale chromatin structure in interphase. Semin Cell Dev Biol 18:682–690

    Article  PubMed  CAS  Google Scholar 

  • Fernández A (1973) El ácido láctico como fijador cromosómico. Bol Soc Argent Bot 15:287–290

    Google Scholar 

  • Fregonezi JN, Fernandes T, Torezan JMD, Vieira AOS, Vanzela ALL (2006) Karyotype differentiation of four Cestrum species (Solanaceae) based on physical mapping of repetitive DNA. Genet Mol Biol 29:97–104

    Article  CAS  Google Scholar 

  • Greilhuber RJ, Speta F (1976) C-banded karyotypes in the Scilla hohenackeri group, S. persica and Puschkinia (Liliaceae). Plant Syst Evol 126:149–188

    Article  Google Scholar 

  • Guerra M (2000) Patterns of heterochromatin distribution in plant chromosomes. Genet Mol Biol 23:1029–1041

    Article  Google Scholar 

  • Gutiérrez JF, Vaquero F, Vences FJ (1994) Allopolyploid vs. Autopolyploid origins in the genus Lathyrus (Leguminosae). Heredity 73:29–40

    Article  Google Scholar 

  • Hammett KRW, Murray BG, Kenneth R, Markham Hallett IC (1994) Interspecific Hybridization between Lathyrus odoratus and L. belinensis. Int J Plant Sci 155:763–771

    Article  Google Scholar 

  • Harlan JR, de Wet JMJ (1975) On Ö. Winge and a prayer: the origins of polyploidy. Bot Rev 41:361–390

    Article  Google Scholar 

  • Heslop-Harrison JS, Schwarzacher T (2011) Organisation of the plant genome in chromosomes. Plant J 66:18–33

    Article  PubMed  CAS  Google Scholar 

  • Khawaja HIT, Sybenga J, Ellis JR (1997) Chromosomes pairing and chiasma formation in autopolyploids of different Lathyrus species. Genome 40:937–944

    Article  PubMed  CAS  Google Scholar 

  • Khawaja HIT, Sybenga J, Ellis JR (1998) Meiosis in aneuploids of tetraploid Lathyrus odoratus and L. pratensis. Hereditas 129:53–57

    Article  Google Scholar 

  • Klamt A, Schifino-Wittmann MT (2000) Karyotype morphology and evolution in some Lathyrus (Fabaceae) species of southern Brazil. Genet Mol Biol 23:463–467

    Article  Google Scholar 

  • Kumar A, Bennetzen JL (1999) Plant retrotransposon. Annu Rev Genet 33:479–532

    Article  PubMed  CAS  Google Scholar 

  • Kumar U, Sinha SSN (1991) Genotoxic effects of two pesticides (Rogor and Bavistin) and antibiotic (Streptomycin) in meiotic cells of grasspea (Lathyrus sativus L.). Cytologia 56:209–214

    Article  CAS  Google Scholar 

  • Kupicha FK (1983) The infrageneric structure of Lathyrus. Notes Roy Bot Gard Endirburg 41:209–244

    Google Scholar 

  • Lavania UC, Sharma AK (1980) Giemsa C banding in Lathyrus L. Bot Gaz 141:199–203

    Article  Google Scholar 

  • Lavia GI, Ortíz MA, Robledo G, Fernández A, Seijo G (2011) Origin of triploid Arachis pintoi Krapov., W.C. Gregory (Leguminosae) by autopolyploidy evidenced by FISH and meiotic behaviour. Ann Bot 108:103–111

    Article  PubMed  Google Scholar 

  • Levan A, Fredga K, Sandberg AA (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52:201–220

    Article  Google Scholar 

  • Loidl J (1983) Some features of heterochromatin in wild Allium species. Plant System Evol 143:117–131

    Article  Google Scholar 

  • Moscone EA, Matzke MA, Matzke AJM (1996) The use of combined FISH/GISH in conjunction with DAPI counterstaining to identify chromosomes containing transgene inserts in amphidiploid tobacco. Chromosoma 105:231–236

    Article  CAS  Google Scholar 

  • Murray BG, Hammett KRW (1989) Lathyrus cloranthus x L. chrysandthus: a new interespecific hybrid. Bot Gaz 150:469–476

    Article  Google Scholar 

  • Murray BG, Hammett KRW, Standring LS (1992) Genomic constancy during the development of Lathyrus odoratus cultivars. Heredity 68:321–327

    Article  Google Scholar 

  • Narayan RKJ (1982) Discontinuous DNA variation in the evolution of plant species: the genus Lathyrus. Evolution 36:877–891

    Article  Google Scholar 

  • Narayan RKJ, Durrant A (1983) DNA distribution in chromosomes of Lathyrus species. Genetica 61:47–53

    Article  CAS  Google Scholar 

  • Narayan RKJ, Rees H (1976) Nuclear DNA divergence among Lathyrus species. Chromosoma 63:101–107

    Article  Google Scholar 

  • Pittenger TH, Frolik EF (1951) Temporary mounts for pollen abortion determinations. Stain Technol 26:181–184

    PubMed  CAS  Google Scholar 

  • Rees H, Hazarika MH (1967) Chromosome evolution in Lathyrus. In: Darlington CD, Lewis KR (eds) Chromosomes today 2. G Allen and Unwin, London, pp 158–165

    Google Scholar 

  • Reeves A (2001) MicroMeasure: a new computer program for the collection and analysis of cytogenetic data. Genome 44:239–443

    Article  Google Scholar 

  • Risso-Pascotto C, Pagliarini MS, Valle CB (2006) A new basic chromosome number for the genus Brachiaria (Trin.) Griseb. (Poaceae: Panicoideae: Paniceae). Genet Res Crop Evol 53:7–10

    Article  Google Scholar 

  • Robledo G, Seijo JG (2008) Characterization of the Arachis (Leguminosae) D genome using fluorescence in situ hybridization (FISH) chromosome markers and total genoma DNA hybridization. Genet Mol Biol 31:717–724

    Article  CAS  Google Scholar 

  • Roy AP, Singh MK (1968) Cytological studies in the genus Lathyrus Linn. Indian J Cytol Genet 2:128–140

    Google Scholar 

  • Schifino-Wittmann MT, Lau AHL, Simioni C (1994) The genera Vicia and Lathyrus (Leguminosae) in Rio Grande do Sul (Southern Brazil): cytogenetics of native, naturalized and exotic species. Rev Bras Genet 17:313–319

    Google Scholar 

  • Schubert I, Wobus U (1985) In situ hybridization confirms jumping nucleolus organizing regions in Allium. Chromosoma 92:143–148

    Article  Google Scholar 

  • Schwarzacher T, Heslop-Harrison P (2000) Practical in situ hybridization. BIOS Scientific, New York

    Google Scholar 

  • Schwarzacher T, Ambros P, Schweizer D (1980) Application of Giemsa banding to orchid karyotype analysis. Plant Syst Evol 134:293–297

    Article  Google Scholar 

  • Schweizer D (1976) Reverse fluorescent chromosome banding with Chromomycin and DAPI. Chromosoma 58:307–324

    Article  PubMed  CAS  Google Scholar 

  • Seijo JG, Fernández A (2003) Karyotype analysis and chromosome evolution in South American Species of Lathyrus (Leguminosae). Am J Bot 90:980–987

    Article  PubMed  Google Scholar 

  • Seijo JG, Solís Neffa VG (2006) Cytogenetic studies in the rare South American Lathyrus hasslerianus Burk. Cytologia 71:11–19

    Article  Google Scholar 

  • Seijo JG, Lavia GI, Fernández A, Krapovickas A, Ducasse D, Moscone EA (2004) Physical mapping of 5S and 18S–25S rRNA genes evidences that Arachis duranensis and A. ipaensis are the wild diploid species involved in the origin of A. hypogaea (Leguminosae). Am J Bot 91:1294–1303

    Article  PubMed  CAS  Google Scholar 

  • Senn HA (1938) Experimental data for a revision of the genus Lathyrus. Am J Bot 25:67–78

    Article  Google Scholar 

  • Sharma AK, Datta PC (1959) Application of improved technique in tracing karyotype difference between strains of Lathyrus odoratus L. Cytologia 24:389–402

    Article  Google Scholar 

  • Slotkin RK, Martienssen R (2007) Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8:272–285

    Article  PubMed  CAS  Google Scholar 

  • Soltis DE, Soltis PS (1999) Polyploidy: recurrent formation and genome evolution. Trends Ecol Evol 14:348–352

    Article  PubMed  Google Scholar 

  • Sybenga J (1995) Meiotic pairing in autohexaplid Lathyrus: a mathematical model. Heredity 75:343–350

    Article  Google Scholar 

  • Ünal F, Wallace AJ, Callow RS (1995) Diverse heterochromatin in Lathyrus. Caryologia 48:47–63

    Google Scholar 

  • Verma SC, Ohri D (1979) Chromosome and nuclear phenotype in the legume Lathyrus sativus L. Cytologia 44:77–90

    Article  Google Scholar 

  • Vorsa N, Bingham ET (1979) Cytology of 2n pollen formation in diploid alfalfa, Medicago sativa. Can J Genet Cytol 21:525–530

    Google Scholar 

  • Winge O (1919) On the relation between number of chromosomes and number of types in Lathyrus especially. J Genet 8:133–138

    Article  Google Scholar 

  • Yamamoto K, Fujiwara T, Blumenreich ID (1984) Karyotypes and morphological characteristics of some species in the genus Lathyrus L. Jpn J Breed 34:273–284

    Google Scholar 

Download references

Acknowledgments

This work was supported by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Agencia Nacional de Promoción Científica y Tecnológica, PICTO-UNNE 090.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Chalup.

Additional information

Part of the L Ch Doctoral Thesis that will be presented to the Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Argentina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chalup, L., Grabiele, M., Solís Neffa, V. et al. Structural karyotypic variability and polyploidy in natural populations of the South American Lathyrus nervosus Lam. (Fabaceae). Plant Syst Evol 298, 761–773 (2012). https://doi.org/10.1007/s00606-011-0587-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-011-0587-z

Keywords

Navigation