Skip to main content
Log in

On Ö. Winge and a Prayer: The origins of polyploidy

  • Published:
The Botanical Review Aims and scope Submit manuscript

Summary

  1. 1)

    Almost all polyploids arise by way of unreduced gametes; other mechanisms occur, but are negligible.

  2. 2)

    The most widespread and common event is (2n+n) reproduction.

  3. 3)

    Triploids so produced frequently yield 4X plants on backcrossing and 6X plants on selfing.

  4. 4)

    Spontaneous polyploids appear repeatedly, but their fate depends on vigor and competitive ability.

  5. 5)

    The polyploids most frequently produced are probably strict autoploids, but they often lack competitive ability and may not become successfully established.

  6. 6)

    Wide crosses occur in nature but not very often; if the hybrid is vigorous, it may yield a stable, fertile polyploid in the second or later generations via unreduced gametes.

  7. 7)

    Wide crosses by way of (2n+n) reproduction are probably more common and successful than the above (6) pathway.

  8. 8)

    The most likely pathway to a successful polyploid in nature involves neither wide crosses nor strict autoploidy but crosses between races, ecotypes and cytotypes within a biological species.

  9. 9)

    The more or less autoploids so produced may generate genuine alloploids by interspecific hybridization at polyploid levels.

  10. 10)

    The classic explanation of alloploidyvia “chromosome doubling” of a sterile diploid interspecific hybrid is misleading in most cases, and this route is probably negligible in the evolution of polyploid systems.

Zusammenfassung

  1. 1)

    Die meisten Polyploide enstehen durch Befruchtungen nicht reduzierter Gameten. Es gibt auch andere, aber unbedeutende Mechanismen.

  2. 2)

    Die am meisten vorkommende Art der Fortpflanzung ist 2n+n.

  3. 3)

    Solche Triploide bilden häufig 4X-Abkömmlinge wenn sie zurückgekreuzt werden, und 6X-Pflanzen wenn sie selbstbestäubt sind.

  4. 4)

    Polyploide entstehen oft spontan, aber ihr Schicksal ist abhängig von ihrer Vitalität und der Fähigkeit sich zu behaupten.

  5. 5)

    Die am häufigsten vorkommenden Polyploide sind wahrscheinlich reine Autopolyploide, aber diese sind oftmals weichlich und können sich dann möglicherweise nicht erfolgreich durchsetzen.

  6. 6)

    Die Natur erzeugt nur selten entfernt verwandte Kreuzungen; aber falls die Bastarde sich behaupten, mögen in den nachfolgenden Generationen stabilen und fruchtbaren Polyploide auftauchen via unreduzierten, Gameten.

  7. 7)

    Kreuzungen swischen entfernter verwandten Pflanzen durch 2n+n-Befruchtungen sind wahrscheinlich häufiger und erfolgreicher als die in der oben erwähnten (6) Weise.

  8. 8)

    Der warscheinlichste in der Natur vorkommende Weg zur Erzeugung einer erfolgreichen Polyploide ist weder durch Kreuzungen swischen entfernt verwandten Individuen, noch durch reine Autopolyploidie, sondern durch Kreuzungen innerhalb einer biologischen Art swischen Rassen, Oekotypen oder Cytotypen.

  9. 9)

    Hemi-Autopolyploide produziert in solcher Weise können wahre Allopolyploide bilden durch Kreuzungen zwischen Arten auf der Polyploid Stufe.

  10. 10)

    Die klassische Erklärung der Allopolyploidie via Verdoppeln der Chromosomenzahl einer sterilen diploiden Hybride verschiedener Arten ist in den meisten Fällen unzutreffend, und diese Route ist wahrscheinlich unbedeutend in der Entwickelung (Evolution) von polyploiden Systemen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Alexander, D. E. 1957. The genetic induction of autotetraploidy: A proposal for its use in corn breeding. Agron. J.49: 40–43.

    Article  Google Scholar 

  • Alexander, D. E. 1958. Genetic induction of autotetraploidy in maize. Proc. 10th Int. Congr. Genet. Montreal: 3 (abst).

  • Alexander, D. E. and J. B. Beckett. 1963. Spontaneous triploidy and tetraploidy in maize. J. Hered.54: 103–106.

    Google Scholar 

  • Andersson-Kottö, I. and A. E. Gairdner. 1931. Interspecific crosses in the genusDianthus. Genetica13: 77–112.

    Article  Google Scholar 

  • Anonymous. 1964. Report of Sugarcane Breeding Institute, Coimbatore. Indian Council Agric. Res.4: 31–33; 107–108; 177–178; 240–243.

  • Barrow, J. R. 1971. Meiosis and pollen development in haploid cotton plants. J. Hered.62: 139–141.

    Google Scholar 

  • Bauman, L. F. 1961. Production of diploid eggs by normal diploid maize. Maize Genet. Coop. Newsletter35: 128–130.

    Google Scholar 

  • Bennett, H. W. and E. C. Bashaw. 1960. An interspecific hybrid inPaspalum. J. Hered.51: 81–85.

    Google Scholar 

  • Bergman, B. 1951. On the formation of reduced and unreduced gametophytes in the females ofAntennaria carpatica. Hereditas37: 501–518.

    Google Scholar 

  • Bernström, Peter. 1955. Cytogenetic studies on relationships between annual species ofLamium. Hereditas41: 1–122.

    Google Scholar 

  • Bingham, E. T. and A. Binek. 1969. Hexaploid alfalfa,Medicago sativa L.: origin, fertility and cytology. Can. J. Genet. Cytol.11: 359–366.

    Google Scholar 

  • Blackburn, K. B. and J. W. H. Harrison. 1924. Genetical and cytological studies in hybrid roses. Brit. J. Exp. Biol.1: 557–570.

    Google Scholar 

  • Buxton, B. H. and C. D. Darlington. 1931. Behaviour of a new species,Digitalis mertonensis. Nature127: 94.

    Article  Google Scholar 

  • Buxton, B. H. and W. C. F. Newton. 1928. Hybrids ofDigitalis ambigua andDigitalis purpurea, their fertility and cytology. J. Genet.19: 269–279.

    Google Scholar 

  • Cauderon, Y. 1958. Etude cytogé né tique desAgropyrum francais et de leurs hybrides avec les blé s. An. Inst. Nat. Rech. Agron. Paris, Sé r. B,8: 389–566.

    Google Scholar 

  • Chavez, R. S. and M. Hernandez de Sosa. 1971. Use of dihaploids in the breeding ofSolarium tuberosum L. I. Cytological considerations. Hereditas69: 83–100.

    Google Scholar 

  • Chheda, H. R. and J. R. Harlan. 1962. Mode of chromosome association inBothriochloa hybrids. Caryologia15: 461–476.

    Google Scholar 

  • Clausen, R. E. 1928. Interspecific hybridization inNicotiana. VII. The cytology of hybrids of the synthetic speciesdigluta, with its parentsglutinosa andtabacum. Univ. Calif. Publ. Bot.11: 177–211.

    Google Scholar 

  • Clausen, R. E. and T. H. Goodspeed. 1925. Interspecific hybridization inNicotiana. II. A tetraploidglutinosa-tabacum hybrid, an experimental verification of Winge’s hypothesis. Genetics10: 278–284.

    PubMed  CAS  Google Scholar 

  • Clausen, J., D. D. Keck and W. M. Heisey. 1945. Experimental studies on the nature of species. II. Plant evolution through amphiploidy and autopolyploidy, with examples from the Madiinae. Carnegie Inst. Wash. Publ.564: 1–174.

    Google Scholar 

  • Combes, D. and J. Pernes. 1970. Variations dans les nombres chromosomiques duPanicum maximum Jacq. en relation avec le mode de réproduction. C. R. Acad. Sc. Paris, Sé r. D,270: 782–785.

    Google Scholar 

  • Crane, M. B. and C. D. Darlington. 1927. The origin of new forms inRubus I. Genetica9: 241–278.

    Article  Google Scholar 

  • Darlington, C. D. 1930. Studies inPrunus III. J. Genet.22a: 65–93.

    Google Scholar 

  • Darlington, C. D. 1932. Recent advances in cytology. Churchill, London, pp. 559.

    Google Scholar 

  • D’Cruz, R. and K. Chakravarty. 1961. Spontaneous allopolyploidy inArachis. Indian Oilseeds J.5: 55–57.

    Google Scholar 

  • Dermen, H., F. H. Harmon and J. H. Weinberger. 1970. Fertile hybrids from a cross of a variety ofVitis vinifera withV. rotundifolia. J. Hered.61: 269–271.

    Google Scholar 

  • De Vries, Hugo. 1913. Gruppenweise Artibildung. Borntraeger, Berlin. pp. 365.

    Google Scholar 

  • deWet, J. M. J. and J. R. Harlan. 1966. Morphology of the compilospeciesBothriochloa intermedia. Amer. J. Bot.53: 94–98.

    Article  Google Scholar 

  • deWet, J. M. J. and J. R. Harlan. 1970. Apomixis, polyploidy and speciation inDichanthium. Evolution24: 270–277.

    Article  Google Scholar 

  • deWet, J. M. J., L. M. Engle, C. A. Grant and S. T. Tanaka. 1972. Cytology ofmaize-Tripsacum introgression. Amer. J. Bot.59: 1026–1029.

    Article  Google Scholar 

  • deWet, J. M. J., J. R. Harlan and W. L. Richardson. 1966. Biosystematics of the Bothriochloininae (Andropogonae, Gramineae): A Report of Progress, 1960 to 1965. Okla. Agric. Expt. Sta. Proc. Series P-532, pp. 31.

  • deWet, J. M. J., R. J. Lambert, J. R. Harlan and S. M. Naik. 1970. Stable triploid hybrids amongZea-Tripsacum-Zea backcross populations. Caryologia23: 183–187.

    Google Scholar 

  • Dewey, D. R. 1972. Cytogenetics ofElymus angustus and its hybrids withElymus giganteus, Elymus cinereus, andAgropyron repens. Bot. Gaz.133: 57–64.

    Article  Google Scholar 

  • Digby, L. 1912. The cytology ofPrimula kewensis and of other relatedPrimula hybrids. Ann. Bot.26: 357–388.

    Google Scholar 

  • Dunford, M. P. 1964. A cytogenetic analysis of certain polyploids inGrindelia (Compositae). Amer. J. Bot.51: 49–56.

    Article  Google Scholar 

  • Emerson, R. A. and G. W. Beadle. 1930. A fertile tetraploid hybrid betweenEuchlaena perennis andZea mays. Amer. Nat.64: 190–192.

    Article  Google Scholar 

  • Engle, L. M., J. M. J. deWet and J. R. Harlan. 1973. Cytology of backcross offspring derived from amaize-Tripsacum hybrid. Crop Sci.13: 690–694.

    Article  Google Scholar 

  • Engle, L. M., J. M. J. deWet and J. R. Harlan. 1974. Chromosomal variation among offspring of hybrid derivatives with 20Zea and 36Tripsacum chromosomes. Carylogia27: 193–209.

    Google Scholar 

  • Esen, A. and R. K. Soost. 1971. Unexpected triploids inCitrus: their origin, identification, and possible use. J. Hered.62: 329–333.

    Google Scholar 

  • Esen, A. and R. K. Soost. 1972. Tetraploid progenies from 2x X 4x crosses ofCitrus and their origin. J. Am. Soc. Hort. Sci.97a: 410–414.

    Google Scholar 

  • Evans, W. D. 1974. Evidence of a crossability barrier in diploid X hexaploid and diploid X octoploid crosses in the genusFragaria. Euphytica23: 95–100.

    Article  Google Scholar 

  • Fagerlind, F. 1947. Die Restitutions— und Kontraktionskerne derHieracium- Microsporogenese. Svensk. Bot. Tidskr.41: 247–263.

    Google Scholar 

  • Fang, J. S. and H. W. Li. 1966. Cytological study inPaspalum conjugatum Berg. Bot. Bull. Acad. Sinica7: 1–12.

    Google Scholar 

  • Fedorova, N. J. 1934. Polyploid interspecific hybrids in the genusFragaria. Genetica16: 524–541.

    Article  Google Scholar 

  • Gairdner, A. E. 1926.Campanula persicifolia and its tetraploid form, Telham Beauty, J. Genet.16: 341–351.

    Google Scholar 

  • Gates, R. R. 1909. The stature and chromosomes ofOenothera gigas De Vries. Archiv f. Zellforsch.3: 525.

    Google Scholar 

  • Gates, R. R. 1924. Polyploidy. Brit. J. Exp. Biol.1: 153–182.

    Google Scholar 

  • Gorenflot, R. and J. L. Marcotte. 1970. Natural polyploidisation in thePlantago maritima complex L. sl. Compt. Rend. Hebd. Acad. Sci. Paris, Sé r. D,270: 1911–1914.

    Google Scholar 

  • Grant, V. 1952. Cytogenetics of the hybridGilia millefoliata Xachilleaefolia. I. Variations in meiosis and polyploidy rate as affected by nutritional and genetic conditions. Chromosoma5: 372–390.

    Article  PubMed  CAS  Google Scholar 

  • Greenleaf, W. H. 1947. A spontaneous tetraploid hybrid in pepper (Capsicum frutescens). Proc. Amer. Soc. Hort. Sci.49: 231–232.

    Google Scholar 

  • Gregor, J. W. and F. W. Sansome. 1930. Experiments on the genetics of wild populations. II.Phleum pratense L. and the hybridP. pratense L. XP. alpinum L. J. Genet.22: 373–387.

    Article  Google Scholar 

  • Hair, J. B. 1956. Subsexual reproduction inAgropyron. Heredity10: 129–160.

    Google Scholar 

  • Håkansson, Artur. 1941. Zur Zytologie von Godetia—Arten und Bastarden. Hereditas27: 319–336.

    Google Scholar 

  • Hakansson, Artur. 1955. Chromosome numbers and meiosis in certain Salices. Hereditas41: 454–482.

    Google Scholar 

  • Hakansson, A. and S. Ellerström. 1950. Seed development after reciprocal crosses between diploid and autotetraploid rye. Hereditas36: 256–296.

    Google Scholar 

  • Harlan, J. R., R. P. Celarier, W. L. Richardson, M. H. Brooks and K. L. Mehra. 1958. Studies on Old World bluestems II. Okla. Agric. Expt. Sta. Tech. Bul. No. T-72, pp. 23.

  • Harlan, J. R. and J. M. J. deWet. 1963. The role of apomixis in the evolution of theBothriochloa-Dichanthium complex. Crop Sci.3: 314–316.

    Article  Google Scholar 

  • Harlan, J. R., M. H. Brooks, D. S. Borgaonkar and J. M. J. deWet. 1964. Nature and inheritance of apomixis inBothriochloa andDichanthium. Bot. Gaz.125: 41–46.

    Article  Google Scholar 

  • Heneen, W. K. 1963. Meiosis in the interspecific hybridElymus farctus XE. repens. Hereditas49: 107–118.

    Google Scholar 

  • Hermsen, J. G. T. 1969. Induction of haploids and aneuploids in colchicineinduced tetraploidSolarium chacoense Bitt. Euphytica18: 183–189.

    Google Scholar 

  • Hitchcock, C. L. and Arthur Cronquist. 1973. Flora of the Pacific Northwest. Univ. Washington Press, Seattle, pp. 730.

    Google Scholar 

  • Hollingshead, Lillian. 1930. Cytological investigations of hybrids and hybrid derivatives ofCrepis capillaris andCrepis tectorum. Univ. Calif. Publ. Agric. Sci.6: 55–94.

    Google Scholar 

  • Hornsey, K. G. 1973. The occurrence of hexaploid plants among auto-tetraploid populations of sugar beet (Beta vulgaris L.), and the production of tetraploid progeny using a diploid pollinator. Caryologia26: 225–228.

    Google Scholar 

  • Ichijima, K. 1926. Cytological and genetic studies onFragaria. Genetics11: 590–604.

    PubMed  CAS  Google Scholar 

  • Jahr, W., K. Skiebe and M. Stein. 1965. Die Herstellung von neuen Allopolyploiden fur die Züchtung. Züchter35: 7–14.

    Article  Google Scholar 

  • Jenkin, T. J. and P. T. Thomas. 1939. Interspecific and intergeneric hybrids in herbage grasses.III. Lolium loliaceum andLolium rigidum. J. Genet.37: 255–286.

    Google Scholar 

  • Johnsson, Helge. 1945. Chromosome numbers of the progeny from the cross triploid X tetraploidPopulus tremula. Hereditas31: 500–501.

    Google Scholar 

  • Jørgensen, C. A. 1928. The experimental formation of heteroploid plants in the genusSolanum. J. Genet.19: 133–210.

    Google Scholar 

  • Kagawa, F. and Y. Chizaki. 1934. Cytological studies on the genus hybrids amongTriticum, Secale andAegilops, and the species hybrids inAegilops. Jap. J. Bot.7: 1–32.

    Google Scholar 

  • Kamemoto, H. 1950. Polyploidy inCattleyas. Amer. Orchid Soc. Bul.19: 366–373.

    Google Scholar 

  • Kandasami, P. A. 1961. Interspecific and intergeneric hybrids ofSaccharum spontaneum L. I. Functioning of gametes. Cytologia26: 2: 117–123.

    Google Scholar 

  • Karpechenko, G. D. 1927. The production of polyploid gametes in hybrids. Hereditas9: 349–368.

    Google Scholar 

  • Kattermann, G. 1934. Die cytologischen Verhältnisse einiger Weizenroggen-Bastarde und ihre Nachkommenschaft (F2). Züchter6: 97–107.

    Google Scholar 

  • Kiellander, C. L. 1950. Polyploidy inPicea Abies. Hereditas36: 513–516.

    Google Scholar 

  • Kihara, H. 1931. Genomanalyse beiTriticum undAegilops II.Aegilotricum undAegilops cylindrica. Cytologia2: 106–156.

    Google Scholar 

  • Kihara, H. and Y. Katayama. 1931. Genomanalyse beiTriticum undAegilops. III. Zur Entstehungsweise eine neuen konstanten oktoploidenAegilotricum. Cytologia2: 234–255.

    Google Scholar 

  • Kihara, H. and T. Ono. 1926. Chromosomenzahlen und systematische Gruppierung der Rumex-Arten. Zeitschr. f. Zellforsch. Mikro Anat.4: 475–481.

    Article  Google Scholar 

  • Kimber, G. and R. Riley. 1963. The relationships of the diploid progenitors of hexaploid wheat. Can. J. Genet. Cytol.5: 83–88.

    Google Scholar 

  • Kootin-Sanwu, M. and S. R. J. Woodell. 1971. The cytology ofCaltha palustris: cytogenetic relationships. Heredity26: 121–125.

    Google Scholar 

  • Kostoff, D. 1938. Studies on polyploid plants. XVIII. Cytogenetic studies onNicotiana silvestris XN. tomentosiformis hybrids and amphidiploids and their bearings on the problem of the origin ofN. tabacum. Compt. Rend. Acad. Sci. USSR18: 459–462.

    Google Scholar 

  • Kostoff, D. and J. Kendall. 1931. Studies of certainPetunia aberrants. J. Genet.24: 165–178.

    Google Scholar 

  • Koul, A. K. and R. N. Gohil. 1971. Further studies on natural triploidy in viviporous onion. Cytologia36: 253–261.

    Google Scholar 

  • Kuwada, Y. 1928. An occurrence of restitution-nuclei in the formation of the embryosacs inBalanophora japonica Mak. Bot. Mag. (Tokyo)42: 117–128.

    Google Scholar 

  • Lammerts, Walter. 1929. Interspecific hybridization inNicotiana. IX. Further studies of the cytology of the backcross progenies of thepaniculata-rustica hybrid. Genetics14: 286–304.

    PubMed  CAS  Google Scholar 

  • Lammerts, Walter. 1931. Interspecific hybridization inNicotiana. XII. The amphidiploidrustica-paniculata hybrid; its origin and cytogenetic behavior. Genetics16: 191–211.

    PubMed  CAS  Google Scholar 

  • Lange, W. and M. Wagenvoort. 1973. Meiosis in triploidSolanum tuberosum. Euphytica22: 8–18.

    Article  Google Scholar 

  • Larsen, C. S. and M. Westergaard, 1938. Contributions to the cytogenetics of forest trees. I. A triploid hybrid betweenLarix decidua Miller andLarix occidentalis Nutt. J. Genet.36: 523–530.

    Google Scholar 

  • Lesley, M. M. and J. W. Lesley. 1930. The mode of origin and chromosome behaviour in pollen mother cells of a tetraploid seedling tomato. J. Genet.22: 419–425.

    Article  Google Scholar 

  • Levan, Albert. 1941. The cytology of the species hybridAllium cepa Xfistulosum and its polyploid derivatives. Hereditas27: 253–272.

    Google Scholar 

  • Li, H. W., C. C. Chen, T. S. Weng and K. D. Wuu. 1963. Cytogenetical studies ofOryza sativa L. and its related species. 4. Interspecific crosses involvingO. australiensis withO. sativa andO. minuta. Bot. Bull. Acad. Sinica4: 65–74.

    Google Scholar 

  • Li, H. W., K. K. S. Yang and K. C. Ho. 1964. Cytogenetical studies ofOryza sativa L. and its related species. 7. Non-synchronization of mitosis and cytokinesis in relation to the formation of diploid gametes in hybrids ofOryza sativa L. andO. officinalis Wall. Bot. Bull. Acad. Sinica5: 142–153.

    Google Scholar 

  • Liljifors, Alf. 1936. Zytologische Studien über den F1—BastardeTriticum turgidum XSecale cereale. Hereditas21: 240–262.

    Google Scholar 

  • Lin, P. S. and J. G. Ross. 1969. Chromosome configuration changes with stages of anther development in a triploid sorghum plant. Crop Sci.9: 670–672.

    Article  Google Scholar 

  • Marchant, C. J. 1968. Evolution inSpartina (Gramineae). II. Chromosomes, basic relationships and problem ofS. Xtownsendii Agg. J. Linn. Soc. (Bot.)60: 381–409

    Google Scholar 

  • Marks, G. E. 1966. The origin and significance of intraspecific polyploidy: experimental evidence fromSolanum chacoense. Evolution20: 552–557.

    Article  Google Scholar 

  • Marsden-Jones, E. W. and W. B. Turrill. 1930. The history of tetraploid Saxifrage. J. Genet.23: 83–92.

    Google Scholar 

  • McClure, W. J. 1966. Cytological and morphological observations in crosses between diploid and tetraploid sorghum. Dissert. Abstr.27: Order No. 66–4039: 44 (Abst.).

    Google Scholar 

  • Menzel, M. Y. and D. W. Martin. 1971. Chromosome homology in some intercontinental hybrids inHibiscus sect.Furcaria. Am. J. Bot.58: 191–202.

    Article  Google Scholar 

  • Mitsuoka, S. and F. Ehrendorfer. 1972. Cytogenetics and evolution ofMatricaria and related genera (Asteraceae-Anthemideae). Bot. Zeitschr.120: 155–200.

    Google Scholar 

  • Montelongo-Escobedo, H. and P. R. Rowe. 1969. Haploid induction in potato: cytological basis for the pollinator effect. Euphytica18: 116–123.

    Google Scholar 

  • Morinaga, T. and E. Fukushima. 1934/35. Cyto-genetical studies onOryza sativa L. II. Spontaneous autotriploid mutants inOryza sativa L. Jap. J. Bot.7: 207–225.

    Google Scholar 

  • Müntzing, Arne. 1932. Cyto-genetic investigations on syntheticGaleopsis tetrahit. Hereditas16: 105–154.

    Google Scholar 

  • Müntzing, Arne. 1939. Studies on the properties and the ways of production of rye-wheat amphidiploids. Hereditas25: 387–430.

    Google Scholar 

  • Müntzing, Arne. 1958. Heteroploidy and polymorphism in some apomictic species ofPotentilla. Hereditas44: 280–329.

    Google Scholar 

  • Newton, W. C. F. and C. D. Darlington. 1929. Meiosis in polyploids. J. Genet.21: 1–56.

    Google Scholar 

  • Newton, W. C. F. and Caroline Pellew. 1929.Primula kewensis and its derivatives. J. Genet.20: 405–467.

    Article  Google Scholar 

  • Olsson, Gösta and Brita Rufelt. 1948. Spontaneous crossing between diploid and tetraploidSinapis alba. Hereditas34: 351–365.

    Google Scholar 

  • Ostergen, G. 1940. Cytology ofAgropyron junceum, A. repens and their spontaneous hybrids. Hereditas26: 305–316.

    Google Scholar 

  • Owenbey, M. 1950. Natural hybridization and amphidiploidy in the genusTragopogon. Am. J. Bot.37: 637–499.

    Google Scholar 

  • Percival, John. 1930. Cytological studies of some hybrids ofAegilops sp. X wheats, and of some hybrids between different species ofAegilops. J. Genet.22: 201–278.

    Article  Google Scholar 

  • Pogan, E. 1971. Karyological studies in a natural hybrid ofAlisma lanceolatum With. XAlisma plantago-aquatica L. and its progeny. Genet. Polan.12: 219–222.

    Google Scholar 

  • Poole, C. F. 1932. The interspecific hybridCrepis rubra XC. foetida and some of its derivatives. II. Two selfed generations from an amphidiploid hybrid. Univ. Calif. Publ. Agric. Sci.6: 231–255.

    Google Scholar 

  • Price, S. 1957. Cytological studies inSaccharum and allied genera. III. Chromosome numbers in interspecific hybrids. Bot. Gaz.118: 146–159.

    Article  Google Scholar 

  • Randolph, L. F. and B. McClintock. 1926. Polyploidy inZea mays L. Am. Nat.60: 99–102.

    Article  Google Scholar 

  • Raman, V. S. and P. C. Kesavan. 1965. A tetraploid hybrid inArachis and its bearing on differentiation between diploid species. Ind. J. Genet.25: 8084.

    Google Scholar 

  • Ramanna, M. S. 1974. The origin of unreduced microspores due to aberrant cytokinesis in the meiocytes of potato and its genetic significance. Euphytica23: 20–30.

    Article  Google Scholar 

  • Reddy, P. S. and R. D’Cruz. 1971. Sterility in the interspecific hybrids ofDichanthium Will. Cytologia36: 461–468.

    Google Scholar 

  • Rhoades, M. M. 1956. Genetic control of chromosome behavior. Maize Genetics Coop. Newsletter30: 38–42.

    Google Scholar 

  • Riley, R. and C. N. Law. 1965. Genetic variation in chromosome pairing. Adv. Genet.13: 57–114.

    Google Scholar 

  • Roach, B. T. 1968. Cytological studies inSaccharum. Chromosome transmission in interspecific and intergeneric crosses. Proc. Int. Soc. Sugar Cane Technologists13: 901–920.

    Google Scholar 

  • Rosenberg, O. 1926. Zum Mechanismus der diploiden Kernteilung in Pollenmutterzellen. Ark. Bot.20B: 1–5.

    Google Scholar 

  • Salesses, G. 1970. Sur le phé nomène de cytomixie chez des hybrides triploides de prunier. Ann. Amé lior. Plantes20: 383–388.

    Google Scholar 

  • Schröter, W. 1966. Möglichkeiten zur Herstellung tetraploider Beta-Rüben über unreduzierte Gameten. Tagungsber. Deutsch. Akad. Landwirtschaftsw. Berlin No. 73, pp. 172.

  • Shimotomai, N. 1932. Eigenartige Vermehrung der Chromosomenzahl bei den Artbastarden vonChrysanthemum. Bot. Mag. (Tokyo)46: 789–799.

    Google Scholar 

  • Simmonds, N. W. 1961. Megasporogenesis and female fertility in three edible triploid bananas. J. Genet.57: 269–278.

    Google Scholar 

  • Skalinska, M. 1932. Cytological mechanism of segregation in the progeny of an allotetraploidAquilegia. Proc. 6th Int. Congr. Genet.2: 185–187.

    Google Scholar 

  • Skiebe, K. 1956. Artbastardierung und Polyploidie in der GattungCheiranthus L. Züchter26: 353–363.

    Article  Google Scholar 

  • Skiebe, K. 1958. Die Bedeutung von unreduzierten Gameten für die Polyploidiezüchtung bei der Fliederprimel (Primula malacoides Franchet). Züchter28: 353–359.

    Article  Google Scholar 

  • Skiebe, K. 1965. Die Entstehung von polyploiden Populationen in der Evolution. Deutsch. Landw. (Berlin)16: 340–343.

    Google Scholar 

  • Snyder, L. A. 1961. Asyndesis and meiotic non-reduction in microsporogenesis of apomicticPaspalum secans, Cytologia26: 50–61.

    Google Scholar 

  • Speckmann, G. J. and G. E. van Dijk. 1972. Chromosome number and plant morphology in some ecotypes ofPoa pratensis L. Euphytica21: 171–180.

    Article  Google Scholar 

  • Stebbins, G. L. 1947. Types of polyploids: their classification and significance. Adv. Genet.1: 403–429.

    PubMed  Google Scholar 

  • Stebbins, G. L. 1950. Variation and evolution in plants. Columbia Univ. Press, New York, pp. 643.

    Google Scholar 

  • Stebbins, G. L. 1970. Chromosomal evolution in higher plants. Addison-Wesley Publ. Co., Menlo Park (Calif.), pp. 216.

    Google Scholar 

  • Stomps, T. J. 1912. Die Enstehung vonOenothera gigas. Ber. Deutsch. Bot. Ges.30: 406–416.

    Google Scholar 

  • Storey, W. B. 1956. Diploid and polyploid gamete formation in orchids. Proc. Am. Soc. Hort. Sci.68: 491–502.

    Google Scholar 

  • Strandhede, Sven-Olov. 1965. Chromosome studies inEleocharis, subser.palustres. II. Pollen mitosis with special reference to some strains with 15 chromosomes, and formation of secondarily unreduced pollen grains. Hereditas53: 374–388.

    Article  Google Scholar 

  • Straub, J. 1939. Polyploidieauslösung durch Temperaturwirkungen. Zeitschr. Bot.34: 385–481.

    Google Scholar 

  • Tara, M. 1972. Cytogenetic studies on natural intergeneric hybridization inAster alliences. I.Aster ageratoides subsp.ovatus (2n=36) XKalimeras incisa (2n=72). Bot. Mag. (Tokyo)5: 219–240.

    Article  Google Scholar 

  • Thompson, R. C. 1942. An amphidiploidLactuca. J. Hered.33: 253–264.

    Google Scholar 

  • Thompson, W. P. 1931. Cytology and genetics of crosses between fourteen and seven chromosome species of wheat. Genetics16: 309–324.

    PubMed  CAS  Google Scholar 

  • Ting, Y. C. 1959. Meiosis in triploid maize-teosinte hybrids. Genetics44: 542 (Abst.).

    Google Scholar 

  • Tschermak, E. von and H. Bleier. 1926. Uber fruchtbare Aegilops-Weizenbastarde. Ber. Deutsch. Bot. Ges.44: 110–132.

    Google Scholar 

  • U. Nagaharv. 1934/35. Genome analysis inBrassica with special reference to the experimental formation ofB. napus and peculiar mode of fertilization. Jap. J. Bot.7: 389–452.

    Google Scholar 

  • Wagenaar, E. B. 1968. Meiotic restitution and the origin of polyploidy. I. Influence of genotype on polyploid seedset in aTriticum crassum XT. turgidum hybrid. Can. J. Genet. Cytol.10: 836–843.

    Google Scholar 

  • Wagenaar, E. B. 1968a. Meiotic restitution and the origin of polyploidy. II. Prolonged duration of metaphase I as a causal factor of restitution induction. Can. J. Genet. Cytol.10: 844–852.

    Google Scholar 

  • Wagenaar, E. B. 1969. Meiotic restitution and the origin of polyploidy. III. The cytology and fertility of eight generations of the offspring of a spontaneously produced amphipolyploid ofTriticum crassum XT. turgidum. Can. J. Genet. Cytol.11: 729–738.

    Google Scholar 

  • Walters, M. S. 1958. Aberrant chromosome movement and spindle formation in meiosis ofBromus hybrids: an interpretation of spindle organization. Am. J. Bot.45: 271–289.

    Article  Google Scholar 

  • Wettstein, F. V. 1924. Morphologie und Physiologie des Formwechsels der Moosen auf genetischer Grundlage. Zeitschr. Indük. Abst. Vererb. Lehre33: 1–236.

    Article  Google Scholar 

  • Whitaker, T. W. 1943. The occurrence of a spontaneous triploid celery. Proc. Am. Soc. Hort. Sci.39: 346–348.

    Google Scholar 

  • Whittington, W. J. and J. Hill. 1961. Growth studies on natural hybrids betweenLolium perenne andFestuca pratensis. J. Exp. Bot.12: 330–340.

    Article  Google Scholar 

  • Winge, Ö. 1917. The chromosomes. Their numbers and general importance. Compt. Rend. Trav. du Lab. de Carlsberg13: 131–275.

    Google Scholar 

  • Winge, Ö. 1933/34. A case of amphidiploidy within the collective speciesErophila vern. Hereditas18: 181–191.

    Article  Google Scholar 

  • Zohary, D. and U. Nur. 1959. Natural triploids in the orchardgrass,Dactyiis glomerata L., polyploid complex and their significance for gene flow from diploid to tetraploid levels. Evolution13: 311–317.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

We thought the title rather clever, but our students soon made it clear that most of the people who read genetic literature today were born after World War II and have no recollection of a wartime song, “Coming in on a Wing and a Prayer”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harlan, J.R., deWet, J.M.J. On Ö. Winge and a Prayer: The origins of polyploidy. Bot. Rev 41, 361–390 (1975). https://doi.org/10.1007/BF02860830

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02860830

Keywords

Navigation