Skip to main content
Log in

Genome size in Dipsacaceae and Morina longifolia (Morinaceae)

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Dipsacaceae and Morinaceae have for a long time been regarded as separate but related families, whereas according to APG III they are included within the larger family Caprifoliaceae. Although genome size studies seldom provide conclusive characters for higher level systematics, they can yield useful information at a lower taxonomy level. In this study, we used DNA flow cytometry (supplemented by Feulgen densitometry) for measurement of genome size variation in the Dipsacaceae genera Cephalaria, Dipsacus, Knautia, Lomelosia, Pterocephalus, Scabiosa, Sixalix, Succisa, and Succisella, and Morina of the Morinaceae. At the monoploid level the Dipsacaceae genera (x = 7–10) vary 5.94-fold between 0.902 and 5.362 pg DNA (1Cx-value), whereas Morina longifolia (x = 17) has only 0.670 pg DNA. At the holoploid level 11.58-fold variation occurs between 0.902 and 10.446 pg DNA (1C-value). In Knautia sect. Trichera ploidy levels 2x, 4x, 6x are accompanied by corresponding increments of C-values, but genome downsizing is observed. In Knautia sect. Tricheroides the only investigated species K. integrifolia (2n = 20) has only 0.60-fold the mean genome size of sect. Trichera. Scabiosa canescens (2n = 2x = 16) has approximately double the C-value of all other Austrian Scabiosa species at the diploid level (pseudopolyploidy). These values raise concern against DNA-ploidy estimations at the interspecific level when chromosome numbers are unknown. The species sorted into two major clades of an existing phylogenetic tree of Dipsacaceae differ characteristically in their range of Cx-values. The KnautiaCephalariaDipsacusSuccisella clade has the great majority of its Cx-values larger than those of the ScabiosaPterocephalusLomelosia clade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • APG (2003) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot J Linn Soc 141:399–436

    Google Scholar 

  • APG (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121

    Google Scholar 

  • Avino M, Tortoriello G, Caputo P (2009) A phylogenetic analysis of Dipsacaceae based on four DNA regions. Plant Syst Evol 279:69–86

    Article  CAS  Google Scholar 

  • Backlund A, Bremer B (1997) Phylogeny of the Asteridae s.str. based on rbcL sequences, with particular reference to the Dipsacales. Plant Syst Evol 207:225–254

    Article  Google Scholar 

  • Bagwell CB, Baker D, Whetstone S, Munson M, Hitchcox S, Ault KA, Lovett EJ (1989) A simple and rapid method for determining the linearity of a flow cytometer amplification system. Cytometry 10:689–694

    Article  CAS  PubMed  Google Scholar 

  • Baranyi M, Greilhuber J (1996) Flow cytometric and Feulgen densitometric analysis of genome size variation in Pisum. Theor Appl Genet 92:297–307

    Article  Google Scholar 

  • Bell CD, Edwards EJ, Kim S-T, Donoghue MJ (2001) Dipsacales phylogeny based on chloroplast DNA sequences. Harvard Pap Bot 6:481–499

    Google Scholar 

  • Benko-Iseppon AM, Morawetz W (2000) Cytological comparison of Calyceraceae and Dipsacaceae with special reference to their taxonomic relationship. Cytologia 65:123–128

    Google Scholar 

  • Bennett MD (1971) The duration of meiosis. Proc Roy Soc Lond B 178:277–299

    Article  CAS  Google Scholar 

  • Bennett MD (1972) Nuclear DNA content and minimum generation time in herbaceous plants. Proc Roy Soc Lond B 181:109–135

    Article  CAS  Google Scholar 

  • Bennett MD, Leitch IJ (2005a) Angiosperm DNA C-values Database. http://data.kew.org/cvalues

  • Bennett MD, Leitch IJ (2005b) Plant DNA C-values Database. http://data.kew.org/cvalues

  • Bennett MD, Leitch IJ (2005c) Nuclear DNA amounts in angiosperms: progress, problems and prospects. Ann Bot 95:45–90

    Article  CAS  PubMed  Google Scholar 

  • Bennetzen JL, Ma J, Devos KM (2005) Mechanisms of recent genome size variation in flowering plants. Ann Bot 95:127–132

    Article  CAS  PubMed  Google Scholar 

  • Bureš P, Wang Y-F, Horová L, Suda J (2004) Genome size variation in central European species of Cirsium (Compositae) and their natural hybrids. Ann Bot 94:353–363

    Article  PubMed  Google Scholar 

  • Caputo P, Cozzolino S (1994) A cladistic analysis of Dipsacaceae (Dipsacales). Plant Syst Evol 189:41–61

    Article  Google Scholar 

  • Caputo P, Cozzolino S, Moretti A (2004) Molecular phylogenetics of Dipsacaceae reveals parallel trends in seed dispersal syndromes. Plant Syst Evol 246:163–175

    Article  CAS  Google Scholar 

  • Carlson S, Mayer V, Donoghue MJ (2009) Phylogenetic relationships, taxonomy, and morphological evolution in Dipsacaceae (Dipsacales) inferred by DNA sequence data. Taxon 58:1075–1091

    Google Scholar 

  • Cavalier-Smith T (1985) Eukaryote gene numbers, non-coding DNA and genome size. In: Cavalier-Smith T (ed) The evolution of genome size. Wiley, Chichester, pp 69–103

    Google Scholar 

  • Doležel J, Greilhuber J, Lucretti S, Meister A, Lysák MA, Nardi L, Obermayer R (1998) Plant genome size estimation by flow cytometry: inter-laboratory comparison. Ann Bot 82(Suppl A):17–26

    Article  Google Scholar 

  • Donoghue MJ, Eriksson T, Reeves PA, Olmstead RG (2001) Phylogeny and phylogenetic taxonomy of Dipsacales, with special reference to Sinadoxa and Tetradoxa (Adoxaceae). Harvard Pap Bot 6:459–479

    Google Scholar 

  • Donoghue MJ, Bell CD, Winkworth RC (2003) The evolution of reproductive characters in Dipsacales. Int J Plant Sci 164:S453–S464

    Article  Google Scholar 

  • Ehrendorfer F (1962) Beiträge zur Phylogenie der Gattung Knautia (Dipsacaceae), I. Cytologische Grundlagen und allgemeine Hinweise. Österr Bot Zeitschr 109:276–343

    Article  Google Scholar 

  • Ehrendorfer F (1964) Evolution and karyotype differentiation in a family of flowering plants: Dipsacaceae. Genet Today 2:399–407

    Google Scholar 

  • Feulgen R, Rossenbeck H (1924) Mikroskopisch-chemischer Nachweis einer Nucleinsäure vom Typus der Thymonucleinsäure und die darauf beruhende elektive Färbung von Zellkernen in mikroskopischen Präparaten. Hoppe-Seyler’s Z Physiol Chem 135:203–248

    CAS  Google Scholar 

  • Fischer MA, Oswald K, Adler W (2008) Exkursionsflora für Österreich, Liechtenstein und Südtirol, III edn. Biologiezentrum der Oberösterreichischen Landesmuseen, Linz

    Google Scholar 

  • Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E (1983) Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220:1049–1051

    Article  CAS  PubMed  Google Scholar 

  • Goldblatt P, Johnson DE (1979-) Index to plant chromosome numbers. http://mobot.mobot.org/W3T/Search/ipcn.html

  • Gregory TR (2005) The C-value enigma in plants and animals: a review of parallels and an appeal for partnership. Ann Bot 95:133–146

    Article  CAS  PubMed  Google Scholar 

  • Greilhuber J (1986) Severely distorted Feulgen-DNA amounts in Pinus (Coniferophytina) after nonadditive fixations as a result of meristematic self-tanning with vacuole contents. Can J Genet Cytol 28:409–415

    CAS  Google Scholar 

  • Greilhuber J (1988) “Self-tanning”—a new and important source of stoichiometric error in cytophotometric determination of nuclear DNA content in plants. Plant Syst Evol 158:87–96

    Article  CAS  Google Scholar 

  • Greilhuber J, Ebert I (1994) Genome size variation in Pisum sativum. Genome 37:646–655

    Article  CAS  PubMed  Google Scholar 

  • Greilhuber J, Temsch EM (2001) Feulgen densitometry: some observations relevant to best practice in quantitative nuclear DNA content determination. Acta Bot Croat 60:285–298

    Google Scholar 

  • Greilhuber J, Lysák MA, Doležel J, Bennett MD (2005) The origin, evolution and proposed stabilisation of the terms ‘Genome Size’ and ‘C-Value’ to describe nuclear DNA contents. Ann Bot 94:255–260

    Article  Google Scholar 

  • Greilhuber J, Borsch T, Müller K, Worberg A, Porembski S, Barthlott W (2006) Smallest angiosperm genomes found in Lentibulariaceae, with chromosomes of bacterial size. Plant Biol 8:770–777

    Article  CAS  PubMed  Google Scholar 

  • Greilhuber J, Temsch EM, Loureiro J (2007) Nuclear DNA content measurement. In: Doležel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells. Analysis of genes, chromosomes and genomes. Wiley, Weinheim, pp 67–101

    Google Scholar 

  • Grime JP, Shacklock JML, Band SR (1985) Nuclear DNA contents, shoot phenology and species co-existence in a limestone grassland community. New Phytol 100:435–445

    Article  CAS  Google Scholar 

  • Hofmann U, Göttmann J (1990) Morina L. und Triplostegia Wall. ex DC. im Vergleich mit Valerianaceae und Dipsacaceae. Bot Jahrb Syst 111:499–553

    Google Scholar 

  • Kachidze N (1929) Karyologische Studien über die Familie der Dipsacaceae. Planta 7:482–502

    Article  Google Scholar 

  • Kamelina OP (1983) Basic results of the comparative embryological investigation of Dipsacaceae and Morinaceae. In: Erdelská O (ed) Fertilization and embryogenesis in ovulated plants. Veda, Bratislava, pp 343–346

    Google Scholar 

  • Kamelina OP (1987) Morinaceae and Dipsacaceae. In: Batygina TB, Kamelina OP, Takhtajan AL, Yakovlev MS, Zhukova GY (eds) Comparative embryology of flowering plants. Nauka Publishers, Leningrad, pp 177–192

    Google Scholar 

  • Kerguélen M (2010) Index Synonymique de la Flore de France. http://www2.dijon.inra.fr/flore-france/ka-kz.htm

  • Kolář F, Štech M, Trávníček P, Rauchová J, Urfus T, Vít P, Kubešová M, Suda J (2009) Towards resolving the Knautia arvensis agg. (Dipsacaceae) puzzle: primary and secondary contact zones and ploidy segregation at landscape and microgeographic scales. Ann Bot 103:963–974

    Article  PubMed  Google Scholar 

  • Leitch IJ, Bennett MD (2004) Genome downsizing in polyploid plants. Biol J Linn Soc 82:651–663

    Article  Google Scholar 

  • Loureiro J, Rodriguez E, Doležel J, Santos C (2007) Two new nuclear isolation buffers for plant DNA flow cytometry—a test with 37 species. Ann Bot 100:875–888

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Devos KM, Bennetzen JL (2004) Analyses of LTR-retrotransposon structure reveal recent and rapid genomic DNA loss in rice. Genome Res 14:860–869

    Article  CAS  PubMed  Google Scholar 

  • Měsíček J (1992) Dipsacaceae. In: Měsíček J, Javůrková-Jarolímová V (eds) List of chromosome numbers of the Czech vascular plants. Academia, Praha, pp 85–87

    Google Scholar 

  • Otto F, Oldiges H, Göhde W, Jain VK (1981) Flow cytometric measurement of nuclear DNA content variations as a potential in vivo mutagenicity test. Cytometry 2:189–191

    Article  CAS  PubMed  Google Scholar 

  • Perdetzoglou DK, Kofinas C, Chinou I, Loukis A, Harvala C (2000) A comparative chemotaxonomic study of eight taxa of Dipsacaceae family. Plant Biosyst 134:213–218

    Article  Google Scholar 

  • Piegu B, Guyot R, Picault N, Roulin A, Saniyal A, Kim H, Collura K, Brar DS, Jackson S, Wing RA, Panauld O (2006) Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Res 16:1262–1269

    Article  CAS  PubMed  Google Scholar 

  • Poddubnaja-Arnoldi V (1933) Spermazellen in der Familie der Dipsacaceae. Planta 21:381–386

    Article  Google Scholar 

  • Suda J, Trávníček P (2006) Reliable DNA ploidy determination in dehydrated tissues of vascular plants by DAPI flow cytometry: new prospects for plant research. Cytometry 69A:273–280

    Article  Google Scholar 

  • Suda J, Krahulcová A, Trávníček P, Krahulec F (2006) Ploidy level versus DNA ploidy level: an appeal for consistent terminology. Taxon 55:447–450

    Article  Google Scholar 

  • Temsch EM, Greilhuber J, Krisai R (2010) Genome size in liverworts. Preslia 82:63–80

    Google Scholar 

  • Verlaque R (1985) Etude biosystématique et phylogénétique des Dipsacaceae. III. Tribus des Knautieae et des Dipsaceae. Rev Cytol Biol Veg Bot 8:171–243

    Google Scholar 

  • Watson L, Dallwitz MJ (1992 onwards) The families of flowering plants: descriptions, illustrations, identification, and information retrieval. http://delta-intkey.com/angio, Version 25th November 2009

  • Wendel JF, Cronn RC, Johnston JS, Price HJ (2002) Feast and famine in plant genomes. Genetics 115:37–47

    CAS  Google Scholar 

  • Yokoya K, Roberts AV, Mottley J, Lewis R, Brandham PE (2000) Nuclear DNA amounts in Roses. Ann Bot 85:557–561

    Article  CAS  Google Scholar 

  • Zhang W-H, Chen Z-D, Li J-H, Chen H-B, Tang Y-C (2003) Phylogeny of the Dipsacales s.l. based on chloroplast trnL-F and ndhF sequences. Mol Phylogen Evol 26:176–189

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Friedrich Ehrendorfer, Luise Schratt-Ehrendorfer, Elvira Hörandl, Veronika Mayer, Peter Schönswetter, Birgit Taumberger, and Karin Tremetsberger for providing material, and Dessislava Dimitrova, Ana Petrova, and Vladimir Vladimirov for helping with the Bulgarian species collection and identification. Thanks also to J. Doležel for standard seeds of S. cereale, H. vulgare and V. faba.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva M. Temsch.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Appendix I (PDF 38 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Temsch, E.M., Greilhuber, J. Genome size in Dipsacaceae and Morina longifolia (Morinaceae). Plant Syst Evol 289, 45–56 (2010). https://doi.org/10.1007/s00606-010-0330-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-010-0330-1

Keywords

Navigation