Skip to main content
Log in

Flow cytometric and Feulgen densitometric analysis of genome size variation in Pisum

  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

A DAPI and ethidium bromide flow cytometric and Feulgen densitometric analysis of genome size variation in Pisum was conducted. The material included 38 accessions of P. sativum of widely different geographic origin and altogether 14 samples of P. elatius, P. abyssinicum, P. humile and P. fulvum. The relative genome size values obtained with the three staining methods were strongly correlated. No evidence for genome size variation was found among P. sativum cultivars. In particular, certain Italian cultivars, for which strongly deviating C-values have been reported, proved to be invariant. The only occasion when ambiguous evidence for marginal genome size variation was found was when all 38 accessions taxonomically affiliated with P. sativum were considered. Pisum abyssinicum and P. fulvum differed from P. sativum by about 1.066-and 1.070-fold, respectively; 1 accession of P. humile differed by 1.089-fold, and 2 of P. elatius by 1.122- and 1.195-fold, respectively (ethidiumbromide comparison), while the other accessions of these taxa were not different from P. sativum. This variation may indicate taxonomic inhomogeneity and demands further investigation. Cultivated P. sativum has long been suspected of not being constant with respect to genome size. As shown here, these findings were not based on genuine differences, but rather were technical in origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anonymous (1994) Gemeinsamer Sortenkatalog für landwirtschaftliche Pflanzenarten. Pisum sativum L. Amtsbl Eur Gemeinschaft 18:323–346

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218

    CAS  Google Scholar 

  • Baranyi M, Greilhuber J (1995) Flow cytometric analysis of genome size variation in cultivated and wild Pisum sativum L. (Fabaceae). Plant Syst Evol 194:231–239

    Google Scholar 

  • Bennett MD (1985) Intraspecific variation in DNA amount and the nucleotypic dimension in plant genetics. In: Freeling M (ed) Plant Genetics (UCLA symposia on molecular and cellular biology, new series, vol 35). Alan R Liss, New York, pp 283–302

    Google Scholar 

  • Bennett MD, Smith JB (1976) Nuclear DNA amounts in angiosperms. Philos Trans R Soc London Ser B 274:227–274

    CAS  Google Scholar 

  • Bennett MD, Smith JB (1991) Nuclear DNA amounts in angiosperms. Philos Trans R Soc London Ser B 334:309–345

    Google Scholar 

  • Bennett MD, Smith JB, Heslop-Harrison JS (1982) Nuclear DNA amounts in angiosperms. Proc R Soc London Ser B 216:179–199

    Google Scholar 

  • Ben-Ze'ev N, Zohary D (1973) Species relationship in the genus Pisum L. Isr J Bot 22:73–91

    Google Scholar 

  • Cavallini A, Natali L (1990) Nuclear DNA variability within Pisum sativum (Leguminosae): cytophotometric analyses. Plant Syst Evol 173:179–185

    Google Scholar 

  • Cavallini A, Cionini G, Gennai D (1993) Nuclear DNA variability within Pisum sativum (Leguminosae): nucleotypic effects on plant growth. Heredity 70:561–565

    Google Scholar 

  • Conicella C, Errico A (1985) Identification of the chromosomes involved in translocations of P. abyssinicum and P. fulvum. In: Eucarpia Meet Pea Breed. Plant Breeding Center C.N.R., Portici, Italy, pp 86–101

    Google Scholar 

  • Conicella C, Errico A (1990) Karyotype variations in Pisum sativum ect. abyssinicum. Caryologia 43:87–97

    Google Scholar 

  • Davis PH (1970) Pisum L. In: Davis PH (ed) Flora of Turkey, vol 3. University Press, Edinburgh, pp 370–372

    Google Scholar 

  • De Laat AMM, Göhde W, Vogelzang MJDC (1987) Determination of ploidy of single plants and plant populations by flow cytometry. Plant Breed 99:303–307

    Google Scholar 

  • Doležel J (1991) Flow cytometric analysis of nuclear DNA content in higher plants. Phytochem Anal 2:143–154

    Google Scholar 

  • Doležel J, Binarova P, Lucretti S (1989) Analysis of nuclear DNA content in plant cells by flow cytometry. Biol Plant 31:113–120

    Google Scholar 

  • Doležel J, Sgorbati S, Lucretti S (1992) Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiol Plant 85:625–631

    Google Scholar 

  • Errico A, Conicella C, Venora G (1991) Karyotype studies on Pisum fulvum and Pisum sativum, using a chromosome image analysis system. Genome 34:105–108

    Google Scholar 

  • Galbraith DW, Harkins KR, Maddox JM, Ayres NA, Sharma DP, Firoozabady E (1983) A rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220:1049–1051

    CAS  Google Scholar 

  • Graham MJ, Nickell CD, Rayburn AL (1994) Relationship between genome size and maturity group in soybean. Theor Appl Genet 88:429–432

    Google Scholar 

  • Greilhuber J (1988) “Self-tanning” — a new and important source of stoichiometric error in cytophotometric determination of nuclear DNA content in plants. Plant Syst Evol 158:87–96

    Google Scholar 

  • Greilhuber J, Ebert I (1994) Genome size variation in Pisum sativum. Genome 37:646–655

    Google Scholar 

  • Guerra M dos S (1983) Variaçao no conteúdo de DNA nuclear de Pisum sativum L. Cienc Cult 35:1661–1663

    Google Scholar 

  • Hâkansson A (1936) Die Reduktionsteilung in einigen Artbastarden von Pisum. Hereditas 21:215–222

    Google Scholar 

  • Lamprecht H (1964) Partielle Sterilität und Chromosomenstruktur bei Pisum. Agric Hortic Genet 22:56–148

    Google Scholar 

  • Lamprecht H (1974) Monographie der Gattung Pisum. Steiermärkische Landesdruckerei, Graz.

    Google Scholar 

  • Lehmann CO (1954) Das morphologische System der Saaterbsen (Pisum sativum L. sens. lat. GOV. ssp. sativum). Zuchter 24:316–337

    Google Scholar 

  • Lehmann CO, Blixt S (1984) Artificial infraspecific classification in relation to phenotypic manifestation of certain genes in Pisum. Agric Hortic Genet 42:49–74

    Google Scholar 

  • Le Pecq J-B, Paoletti C (1967) A fluorescent complex between ethidium bromide and nucleic acids. J Mol Biol 27:87–106

    Google Scholar 

  • Michaelson MJ, Price HJ, Ellison JR, Johnston S (1991) Comparison of plant DNA contents determined by Feulgen microspectrophotometry and laser flow cytometry. Am J Bot 78:183–188

    Google Scholar 

  • Mukherjee S, Sharma AK (1986) Estimation of in situ DNA content in organs of different strains of Pisum sativum L. Nucleus 28:236–239

    Google Scholar 

  • Rayburn AL, Auger JA, Benzinger EA, Hepburn AG (1989) Detection of intraspecific DNA content variation in Zea mays L. tby flow cytometry. J Exp Bot 40:1179–1183

    Google Scholar 

  • Rohlf FJ (1992) BIOM. A package of statistical programs to accompany the text “Biometry”. Applied Biostatistics, New York

    Google Scholar 

  • Rosen G von (1944) Artkreuzungen in der Gattung Pisum, insbesondere zwischen P. sativum L. und P. abyssinicum Braun. Hereditas 30:261–400

    Google Scholar 

  • Saccardo F (1971) Crosses among Pisum species. Pisum Newsl 3:38

    Google Scholar 

  • Schweizer D, Davies D (1972) Nuclear DNA contents of Pisum genotypes grown in vivo and in vitro. Planta 106:23–29

    Google Scholar 

  • Sgorbati S, Levi M, Sparvoli E, Trezzi F, Lucchini G (1986) Cytometry and flow cytometry of 4',6-diamidino-2-phenylindole (DAPI)-stained suspensions of nuclei released from fresh and fixed tissues of plants. Physiol Plant 68:471–476

    Google Scholar 

  • Smartt J (1984) Evolution of grain legumes. I. Mediterranean pulses. Exp Agric 20:275–296

    Google Scholar 

  • Ulrich I, Ulrich W (1986) Flow cytometric DNA-analysis of plant protoplasts stained with DAPI. Z Naturforsch 41c:1052–1056

    Google Scholar 

  • Ulrich I, Ulrich W (1991) High-resolution flow cytometry of nuclear DNA in higher plants. Protoplasma 165:212–215

    Google Scholar 

  • Ulrich I, Fritz B, Ulrich W (1988) Application of DNA fluorochromes for flow cytometric DNA analysis of plant protoplasts. Plant Sci 55:151–158

    Google Scholar 

  • Ulrich W (1992) Simultaneous measurement of DAPI-sulforhodamine 101-stained nuclear DNA and protein in higher plants by flow cytometry. Biotechnic Histochem 67:73–78

    Google Scholar 

  • Zohary D, Hopf M (1973) Domestication of pulses in the Old World. Science 182:887–894

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by F. Mechelke

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baranyi, M., Greilhuber, J. Flow cytometric and Feulgen densitometric analysis of genome size variation in Pisum . Theoret. Appl. Genetics 92, 297–307 (1996). https://doi.org/10.1007/BF00223672

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00223672

Key words

Navigation