Skip to main content
Log in

Genome size variation among and within Ophiopogoneae species by flow cytometric analysis

  • Original Article
  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

Genome size variation in a taxonomic group reflects evolutionary processes. DNA contents of Ophiopogoneae (40 populations of 31 species) were estimated by flow cytometry. Ploidy levels of Ophiopogon (ten species), Liriope (two species), and Peliosanthes (three species) were determined based on the DNA contents. The genus Peliosanthes showed significant larger genome sizes than Ophiopogon (P < 0.01), and Ophiopogon also significant larger than Liriope (P < 0.05). Intraspecific variation in genome size was mainly chromosome difference. The ITS sequence phylogeny splitted Ophiopogon into two clades, clade I comprising sect. Ophiopogon with diploids and tetraploids, and clade II including transitional species and sects. Ophiopogon and Peliosanthoides with diploids. The trend seemed to increase in genome size from Ophiopogon sect. Peliosanthoides (13.45 pg) to Ophiopogon sect. Ophiopogon (14.27 pg). Polyploidization may be evolutionary direction of Ophiopogon. Our results also suggested that the ‘increase’ hypothesis for genome size evolutionary may hold true in the genus Ophiopogon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arumuganathan K, Earle ED (1991) Estimation of nuclear DNA content of plants by flow cytometry. Plant Mol Biol Rep 9:229–233

    Article  CAS  Google Scholar 

  • Bainard JD, Husband BC, Baldwin SJ, Fazekas AJ, Gregory TR, Newmaster SG, Kron P (2011) The effects of rapid desiccation on estimates of plant genome size. Chromosome Res 19:825–842

    Article  CAS  PubMed  Google Scholar 

  • Barakat A, Carels N, Bernardi G (1997) The distribution of genes in the genomes of Gramineae. P Natl Acad Sci USA 94:6857–6861

    Article  CAS  Google Scholar 

  • Bennett MD (1972) Nuclear DNA content and minimum generation time in herbaceous plants. P R Soc B Biol Sci 181:109–135

    Article  CAS  Google Scholar 

  • Bennett MD (1973) Nuclear characters in plants. Brookhaven Symp Biol 25:344–366

    Google Scholar 

  • Bennett MD, Leitch IJ (2011) Nuclear DNA amounts in angiosperms: targets, trends and tomorrow. Ann Bot 107:467–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett MD, Bhandol P, Leitch IJ (2000) Nuclear DNA amounts in angiosperms and their modern uses-807 new estimates. Ann Bot 86:859–909

    Article  CAS  Google Scholar 

  • Bennetzen JL (2002) Mechanisms and rates of genome expansion and contraction in flowering plants. Genetica 115:29–36

    Article  CAS  PubMed  Google Scholar 

  • Bennetzen JL, Ma J, Devos KM (2005) Mechanisms of recent genome size variation in flowering plants. Ann Bot 95:127–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Besnard G, Garcia-Verdugo C, Rubiodecasas R, Treier UA, Galland N, Vargas P (2008) Polyploidy in the olive complex (Olea europaea): evidence from flow cytometry and nuclear microsatellite analyses. Ann Bot 101:25–30

    Article  CAS  PubMed  Google Scholar 

  • Bharathan G (1996) Reproductive development and nuclear DNA content in angiosperms. Genome 39:379–394

    Article  Google Scholar 

  • Bharathan G, Lambert G, Galbraith DW (1994) Nuclear DNA content of monocotyledons and related taxa. Am J Bot 81:381–386

    Article  Google Scholar 

  • Bureš P, Wang YF, Horová L, Suda J (2004) Genome size variation in central European species of Cirsium (Compositae) and their natural hybrids. Ann Bot 94:353–363

    Article  PubMed  PubMed Central  Google Scholar 

  • Chrtek J, Zahradniček J, Krak K, Fehrer J (2009) Genome size in Hieracium subgenus Hieracium (Asteraceae) is strongly correlated with major phylogenetic groups. Ann Bot 104:161–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comeron JM (2001) What controls the length of noncoding DNA? Curr Opin Genet Dev 11:652–659

    Article  CAS  PubMed  Google Scholar 

  • Doležel J, Greilhuber J, Lucretti S, Meister A, Lysák MA, Nardi L, Obermayer R (1998) Plant genome size estimation by flow cytometry: inter-laboratory comparison. Ann Bot 82:17–26

    Article  Google Scholar 

  • Doležel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2:2233–2244

    Article  PubMed  Google Scholar 

  • Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E (1983) Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220:1049–1051

    Article  CAS  PubMed  Google Scholar 

  • Greilhuber J (1986) Severely distorted Feulgen-DNA amounts in Pinus (Coniferophytina) after non additive fixations as a result of meristematic self-tanning with vacuole contents. Can J Genet Cytol 28:409–415

    Article  CAS  Google Scholar 

  • Greilhuber J (1988) ‘‘Self-tanning’’—a new an important source of stoichiometric error in cytophotometric determination of nuclear DNA content in plants. Plant Syst Evol 158:87–96

    Article  CAS  Google Scholar 

  • Greilhuber J (1998) Intraspecific variation in genome size: a critical reassessment. Ann Bot 82:27–35

    Article  Google Scholar 

  • Greilhuber J (2005) Intraspecific variation in genome size in angiosperms: identifying its existence. Ann Bot 95:91–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greilhuber J, Obermayer R (1997) Genome size and maturity group in Glycine max (soybean). Heredity 78:547–551

    Article  Google Scholar 

  • Greilhuber J, Temsch EM, Loureiro JCM (2007) Nuclear DNA content measurement. In: Doležel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells: analysis of genes, chromosomes and genomes. Wiley, Weinheim, pp 67–101

    Chapter  Google Scholar 

  • Grover CE, Wendel JF (2010) Recent insights into mechanisms of genome size change in plants. J Bot. doi:10.1155/2010/382732

    Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hall S, Dvorak WS, Johnston JS, Price HJ, Williams CGE (2000) Flow cytometric analysis of DNA content for tropical and temperate new world pines. Ann Bot 86:1081–1086

    Article  CAS  Google Scholar 

  • Hanson L, McMahon KA, Johnson MAT, Bennett MD (2001) First nuclear DNA C-values for 25 angiosperm families. Ann Bot 87:251–258

    Article  CAS  Google Scholar 

  • Huang H, Tong Y, Zhang QJ, Gao LZ (2013) Genome size variation among and within Camellia species by using flow cytometric analysis. PLoS ONE 8:e64981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huelsenbeck JP, Ronquist R (2001) MRBAYES: bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  CAS  PubMed  Google Scholar 

  • Kolář F, Lučanová M, Těšitel J, Loureiro J, Suda J (2012) Glycerol-treated nuclear suspensions—an efficient preservation method for flow cytometric analysis of plant samples. Chromosome Res 20:303–315

    Article  PubMed  Google Scholar 

  • Lattier JD, Ranney TG, Fantz PR, Avent T (2014) Identification, nomenclature, genome sizes, and ploidy levels of Liriope and Ophiopogon Taxa. HortScience 49:145–151

    Google Scholar 

  • Leitch IJ, Chase MW, Bennett MD (1998) Phylogenetic analysis of DNA C-values provides evidence for a small ancestral genome size in flowering plants. Ann Bot 82(suppl. A):85–94

    Article  CAS  Google Scholar 

  • Leitch AR, Lim KY, Webband DR, Mcfadden GI (2001) In situ hybridisation. In: Hawesand C, Satait-Jeunemaitre B (eds) In plant cell biology, a practical approach. Oxford University Press, Oxford, pp 267–293

    Google Scholar 

  • Levin DA (2002) The role of chromosomal change in plant evolution. Oxford University Press, Oxford

    Google Scholar 

  • Morgan MT (2001) Transposable element number in mixed mating populations. Genet Res 77:261–275

    Article  CAS  PubMed  Google Scholar 

  • Moscone EA, Baranyi M, Ebert I, Greilhuber J, Ehrendorfer F, Hunziker AT (2003) Analysis of nuclear DNA content in Capsicum (Solanaceae) by flow cytometry and Feulgen densitometry. Ann Bot 92:21–29

    Article  PubMed  PubMed Central  Google Scholar 

  • Petrov DA (2001) Evolution of genome size: new approaches to an old problem. Trends Genet 17:23–28

    Article  CAS  PubMed  Google Scholar 

  • Petrov DA (2002) Mutational equilibrium model of genome size evolution. Theor Popul Biol 61:531–544

    Article  PubMed  Google Scholar 

  • Posada D, Buckley TR (2004) Model selection and model averaging in phylogenetics: advantages of the AIC and Bayesian approaches over likelihood ratio tests. Syst Biol 53:793–808

    Article  PubMed  Google Scholar 

  • Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  PubMed  Google Scholar 

  • Price HJ (1976) Evolution of DNA content in higher plants. Bot Rev 42:27–52

    Article  CAS  Google Scholar 

  • Price HJ (1988) DNA content variation among higher plants. Ann Mo Bot Gard 75:1249–1257

    Article  Google Scholar 

  • Price HJ, Dillon SL, Hodnett G, Rooney WL, Ross L, Hohnston JS (2005) Genome evolution in the genus Sorghum (Poaceae). Ann Bot 95:219–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salabert de Campos JM, Sousa SM, Souza Silva P, Pinheiro LC, Sampaio F, Viccini F (2011) Chromosome numbers and DNA C-values in the genus Lippia (Verbenaceae). Plant Syst Evol 291:133–140

    Article  Google Scholar 

  • Schönswetter P, Suda J, Popp M, Weiss-Schneeweiss H, Brochmann C (2007) Circumpolar phylogeography of Juncus biglumis (Juncaceae) inferred from AFLP fingerprints, cpDNA sequences, nuclear DNA content and chromosome numbers. Mol Phylogenet Evol 42:92–103

    Article  PubMed  Google Scholar 

  • Šmarda P, Bureš P (2006) Intraspecific DNA content variability in Festuca pallens on different geographical scales and ploidy levels. Ann Bot 98:665–678

    Article  PubMed  PubMed Central  Google Scholar 

  • Soltis DE, Soltis PS, Bennett MD, Leitch IJ (2003) Evolution of genome size in the angiosperms. Am J Bot 90:1596–1603

    Article  PubMed  Google Scholar 

  • Stace CA (2000) Cytology and cytogenetics as a fundamental taxonomic resource for the 20th and 21st centuries. Taxon 49:451–477

    Article  Google Scholar 

  • Suda J, Travnicek P (2006a) Estimation of relative nuclear DNA content in dehydrated plant tissues by flow cytometry. In: Robinson JP, Darzynkiewicz Z, Dobrucki J, Hyun W, Nolan J, Orfao A, Rabinovitch P (eds) Current protocols in cytometry. Wiley, New York

    Google Scholar 

  • Suda J, Travnicek P (2006b) Reliable DNA ploidy determination in dehydrated tissues of vascular plants by DAPI flow cytometry—new prospects for plant research. Cytom Part A 69A:273–280

    Article  Google Scholar 

  • Suda J, Krahulcová A, Trávnícek P, Krahulec F (2006) Ploidy level versus DNA ploidy level: an appeal for consistent terminology. Taxon 55:447–450

    Article  Google Scholar 

  • Suda J, Krahulcová A, Trávnícek P, Rosenbaumová R, Peckert T, Krahulec F (2007) Genome size variation and species relationships in Hieracium subgenus Pilosella (Asteraceae) as inferred by flow cytometry. Ann Bot 100:1323–1355

    Article  PubMed  PubMed Central  Google Scholar 

  • Swift H (1950) The constancy of deoxyribose nucleic acid in plant nuclei. P Natl Acad Sci USA 36:643–654

    Article  CAS  Google Scholar 

  • Swofford DL (2003) PAUP*: phylogenetic analysis using parsimony (*and other methods), version 4.0b10. Sinauer, Sunderland

    Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voglmayr H (2000) Nuclear DNA amounts in mosses (Musci). Ann Bot 85:531–546

    Article  CAS  Google Scholar 

  • Walker DJ, Moñino I, Correal E (2006) Genome size in Bituminaria bituminosa (L.) C. H. Stirton (Fabaceae) populations: separation of ‘‘true’’ differences from environmental effects on DNA determination. Environ Exp Bot 55:258–265

    Article  CAS  Google Scholar 

  • Wang FZ, Tang J (1978) Ophiopogon Ker-Gawl. Flora Reipublicae Popularis Sin, vol 15. Science Press, Beijing

    Google Scholar 

  • Wang GY, Meng Y, Yang YP (2013) Karyotype analyses of 33 species of the tribe Ophiopogoneae (Liliaceae) from Southwest China. J Plant Res 126:597–604

    Article  PubMed  Google Scholar 

  • Wang GY, Meng Y, Huang JL, Yang YP (2014) Molecular Phylogeny of Ophiopogon (Asparagaceae) inferred from nuclear and plastid DNA sequences. Syst Bot 39:776–784

    Article  Google Scholar 

  • Wendel JF, Cronn RC, Johnston JS, Price HJ (2002) Feast and famine in plant genomes. Genetica 115:37–47

    Article  CAS  PubMed  Google Scholar 

  • Wright SI, Schoen DJ (1999) Transposon dynamics and the breeding system. Genetica 107:139–148

    Article  CAS  PubMed  Google Scholar 

  • Yang YP, Li H (1990) Study on the taxonomic system of Ophiopogon. Acta Bot Yunnan (Suppl III) 3:70–89

  • Yang YP, Li H, Liu XZ, Katsuhiko K (1990) Karyotype study of the genus Ophiopogon in Yunnan. Acta Bot Yunnan (Suppl III) 3:94–102

  • Zhang DM (1991) Chromosomal study and an insight into systematics of the tribe Ophiopogoneae (Endl.) Kunth. Dissertation, Institute of Botany, Chinese Academy of Sciences

  • Zonneveld BJM, Leitch IJ, Bennett MD (2005) First nuclear DNA amounts in more than 300 angiosperms. Ann Bot 9:229–244

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Hu Guangwan for providing certain necessary materials. The study was supported by grants from the Ministry of Science and Technology of China, Major State Basic Research Development Program (2010CB951700), the National Natural Science Foundation of China (NSFC 40930209 to H. Sun), and the General Project of Natural Science Research in Anhui Province (AQKJ2015B018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongping Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

40415_2016_358_MOESM1_ESM.tif

Fluorescence histograms illustrating the nuclear DNA content of eight species obtained by flow cytometric analysis of propidium iodide-stained nuclei isolated from silica gel-dried leaves. a. Zea mays; b. O. bodinieri, diploids; c. O. szechuansis, diploids; d. O. latifolius, diploids; e. O. japonicus, tetraploids; f. O. zingiberaceus, tetraploids; g. O. japonicus, tetraploids; h. L. platyphylla, diploids; i. P. ophiopogoniodes, diploids (TIFF 3960 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Meng, Y. & Yang, Y. Genome size variation among and within Ophiopogoneae species by flow cytometric analysis. Braz. J. Bot 40, 529–537 (2017). https://doi.org/10.1007/s40415-016-0358-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40415-016-0358-8

Keywords

Navigation