Skip to main content
Log in

Complete sequence and organization of the cucumber (Cucumis sativus L. cv. Baekmibaekdadagi) chloroplast genome

  • Genetics and Genomics
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

The nucleotide sequence of the cucumber (Cucumis sativus L. cv. Baekmibaekdadagi) chloroplast genome was completed (DQ119058). The circular double-stranded DNA, consisting of 155,527 bp, contained a pair of inverted repeat regions (IRa and IRb) of 25,187 bp each, which were separated by small and large single copy regions of 86,879 and 18,274 bp, respectively. The presence and relative positions of 113 genes (76 peptide-encoding genes, 30 tRNA genes, four rRNA genes, and three conserved open reading frames) were identified. The major portion (55.76%) of the C. sativus chloroplast genome consisted of gene-coding regions (49.13% protein coding and 6.63% RNA regions; 27.81% LSC, 9.46% SSC and 18.49% IR regions), while intergenic spacers (including 20 introns) made up 44.24%. The overall G-C content of C. sativus chloroplast genome was 36.95%. Sixteen genes contained one intron, while two genes had two introns. The expansion/contraction manner of IR at IRb/LSC and IR/SSC border in Cucumis was similar to that of Lotus and Arabidopsis, and the manner at IRa/LSC was similar to Lotus and Nicotiana. In total, 56 simple sequence repeats (more than 10 bases) were identified in the C. sativus chloroplast genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adachi J, Waddell PJ, Martin W, Hasegawa M (2000) Plastid genome phylogeny and a model of amino acid substitution for proteins encoded by chloroplast DNA. J Mol Evol 50:348–358

    PubMed  CAS  Google Scholar 

  • Boudreau E, Takahashi Y, Lemieux C, Turmel M, Rochaix JD (1997) The chloroplast ycf3 and ycf4 open reading frames of Chlamydomonas reinhardtii are required for the accumulation of the Photosystem I complex. EMBO J 16:6095–6104

    Article  PubMed  CAS  Google Scholar 

  • Bock R, Khan MS (2004) Taming plastids for a green future. Trend Biotechnol 22(6):311–318

    Article  CAS  Google Scholar 

  • Cato SA, Richardson TE (1996) Inter- and intraspecific polymorphism at chloroplast SSR loci and the inheritance of plastids in Pinus radiata D. Don. Theor Appl Genet 93:587–592

    CAS  Google Scholar 

  • Chu KH, Qi J, Yu ZG, Anh V (2004) Origin and phylogeny of chloroplasts revealed by a simple correlation analysis of complete genomes. Mol Biol Evol 21:200–206

    Article  PubMed  CAS  Google Scholar 

  • Cosner ME, Raubeson LA, Jansen RK (2004) Chloroplast DNA rearrangements in Campanulaceae: phylogenetic utility of highly rearranged genomes. BMC Evol Biol 4:27

    Article  PubMed  CAS  Google Scholar 

  • Daniell H, Ruiz ON, Dhingra A (2004) Chloroplast genetic engineering to improve agronomic traits. Methods Mol Biol 286:111–138

    Google Scholar 

  • Goremykin V, Hirsch-Ernst KI, Wölfl S, Hellwig FH (2003) The chloroplast genome of the “basal” angiosperm Calycanthus fertilis—structural and phylogenetic analyses. Plant Syst Evol 242:119–135

    Article  CAS  Google Scholar 

  • Goremykin VV, Hirsch-Ernst KI, Wölfl S, Hellwig FH (2004) The chloroplast genome of Nymphaea alba: Whole-genome analyses and the problem of identifying the most basal angiosperm. Mol Biol Evol 21:1445–1454

    Article  PubMed  CAS  Google Scholar 

  • Havey MJ, Lilly JW, Bohanec B, Bartoszewski G, Malepszy S (2002) Cucumber: a model angiosperm for mitochondrial transformation? J Appl Genet 43(1):1–17

    PubMed  Google Scholar 

  • Jansen RK, Raubeson LA, Boore JL, dePamphilis CW, Chumley TW, Haberle RC, Wyman SK, Alverson AJ, Peery R, Herman SJ, Fourcade HM, Kuehl JV, McNeal JR, Leenens-Mack J, Cui L (2005) Methods for obtaining and analyzing whole chloroplast genome sequences. Method Enzymol 395:348–384

    Article  CAS  Google Scholar 

  • Kim KJ, Lee HL (2004) Complete chloroplast genome sequences from Korean ginseng (Panax schinseng Nees) and comparative analysis of sequence evolution among 17 vascular plants. DNA Res 11:247–261

    Article  PubMed  CAS  Google Scholar 

  • Maliga P (2002) Engineering the plastid genome of higher plants. Curr Opin Plant Biol 5:164–172

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Rujan T, Richly E., Hansen A, Cornelsen S., Lins T, Leister D, Stobe B, Hasegawa M, Penny D (2002) Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci USA 99:12246–12251

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka Y, Yamazaki Y, Ogihara Y, Tsunewaki K (2002) Whole chloroplast genome comparison of rice, maize, and wheat: Implications for chloroplast gene diversification and phylogeny of cereals. Mol Biol Evol 19:2084–2091

    PubMed  CAS  Google Scholar 

  • Palmer JD (1982) Physical and gene mapping of chloroplast DNA from Atriplex triangularis and Cucumis sativus. Nucl Acids Res 10:1593–1605

    Article  PubMed  CAS  Google Scholar 

  • Palmer J, Jansen R, Michaels H, Chase M, Manhart J (1988) Chloroplast DNA variation and plant phylogeny. Ann Missouri Bot Gard 75:1180–1206

    Article  Google Scholar 

  • Palmer JD (1991) Plastid chromosome: structure and evolution. In: Hermann RG (ed) The molecular biology of plastids. Cell culture and somatic cell genetics of plants, Springer-Verlag, Vienna, pp 5–53

    Google Scholar 

  • Powell W, Morgante M, McDevitt R, Vendramin GG, Rafalski JA (1995) Polymorphic simple sequence repeat regions in chloroplast genomes: applications to the population genetics of pines. Proc Natl Acad Sci USA 92:7759–7763

    Article  PubMed  CAS  Google Scholar 

  • Raubeson LA, Jansen RK (2005) Chloroplast genomes of plants. In: Henry RJ (ed) Plant diversity and evolution: Genotypic and phenotypic variation in higher plants, CAB International, Wallingford, UK, pp 45–68

    Google Scholar 

  • Ruf S, Kössel H, Bock R (1997) Targeted inactivation of a tobacco intron-containing open reading frame reveals a novel chloroplast-encoded Photosystem I-related gene. J Cell Biol 139:95–102

    Article  PubMed  CAS  Google Scholar 

  • Schulze J, Balko C, Zellner B, Koprek T, Hänsch R, Nerlich A, Mendel RR (1995) Biolistic transformation of cucumber using embryogenic suspension cultures: long-term expression of reporter genes. Plant Sci 112:197–206

    Article  CAS  Google Scholar 

  • Shimada H, Sugiura M (1989) Pseudogenes and short repeated sequences in the rice chloroplast genome. Curr Genet 16:293–301

    Article  PubMed  CAS  Google Scholar 

  • Stoebe B, Martin W, Kowallik KV (1998) Distribution and nomenclature of protein-coding genes in 12 sequenced chloroplast genomes. Plant Mol Biol Rep 16:243–255

    Article  CAS  Google Scholar 

  • Surpin M, Larkin RM, Chory J (2002) Signal transduction between the chloroplast and the nucleus. Plant Cell S327–S338

  • Szwacka M, Morawski M, Bueza W (1996) Agrobacterium tumefaciens-mediated cucumber transformation with thaumatin II cDNA. J Appl Genet 37A:126–129

    Google Scholar 

  • Triboush SO, Danilenko NG, Davydenko OG (1998) A method for isolation of chloroplast DNA and mitochondrial DNA from sunflower. Plant Mol Biol Rep 16:183–189

    Article  CAS  Google Scholar 

  • Wakasugi T, Sugita M, Tsudzuki T, Sugiura M (1998) Updated gene map of tobacco chloroplast DNA. Plant Mol Biol Rep 16:231–241

    Article  CAS  Google Scholar 

  • Wakasugi T, Sugita M, Tsudzuki T, Sugiura M (2001) The genomics of land plant chloroplasts: gene content and alteration of genomic information by RNA editing. Photosyn Res 70:107–118

    Article  PubMed  CAS  Google Scholar 

  • Yin Z, Hennig J, Szwacka M, Malepszy S (2004) Tobacco PR-2d promoter is induced in transgenic cucumber in response to biotic and abiotic stimuli. J Plant Physiol 161:621–629

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Seog Kim.

Additional information

Communicated by I. S. Chung

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, JS., Jung, J.D., Lee, JA. et al. Complete sequence and organization of the cucumber (Cucumis sativus L. cv. Baekmibaekdadagi) chloroplast genome. Plant Cell Rep 25, 334–340 (2006). https://doi.org/10.1007/s00299-005-0097-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-005-0097-y

Keywords

Navigation