Skip to main content
Log in

Hamiltonian approach to the modeling of internal geophysical waves with vorticity

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

We examine a simplified model of internal geophysical waves in a rotational 2-dimensional water-wave system, under the influence of Coriolis forces and with gravitationally induced waves. The system consists of a lower medium, bound underneath by an impermeable flat bed, and an upper lid. The two media have a free common interface. Both media have constant density and constant (non-zero) vorticity. By examining the governing equations of the system we calculate the Hamiltonian of the system in terms of its conjugate variables and perform a variable transformation to show that it has canonical Hamiltonian structure. We then linearize the system, determine the equations of motion of the linearized system and calculate the dispersion relation. Finally, limiting cases are examined to recover irrotational and single medium systems as well as an infinite two media system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Fedorov, A., Brown, J.: Equatorial waves. In: Encyclopedia of Ocean Sciences, pp. 3679–3695 (2009)

  2. Zakharov, V.: Stability of periodic waves of finite amplitude on the surface of a deep fluid. Zh. Prikl. Mekh. Tekh. Fiz. 9, 86–94 (1968)

    Google Scholar 

  3. Benjamin, T., Olver, P.: Hamiltonian structure, symmetries and conservation laws for water waves. J. Fluid Mech. 125, 137–185 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  4. Craig, W.: Water waves, Hamiltonian systems and Cauchy integrals. IMA Vol. Math. Appl. 30, 37–45 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  5. Milder, D.: A note regarding ‘On Hamilton‘s principle for water waves’. J. Fluid Mech. 83, 159–161 (1977)

    Article  MATH  Google Scholar 

  6. Miles, J.: Hamiltonian formulations for surface waves. Appl. Sci. Res. 37, 103–110 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  7. Miles, J.: On Hamilton‘s principle for water waves. J. Fluid Mech. 83, 153–158 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  8. Constantin, A.: On the deep water wave motion. J. Phys. A 34, 1405–1417 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Constantin, A., Escher, J.: Symmetry of steady periodic surface water waves with vorticity. J. Fluid Mech. 498, 171–181 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Constantin, A., Sattinger, D., Strauss, W.: Variational formulations for steady water waves with vorticity. J. Fluid Mech. 548, 151–163 (2006)

    Article  MathSciNet  Google Scholar 

  11. Constantin, A., Strauss, W.: Exact steady periodic water waves with vorticity. Commun. Pure Appl. Math. 57, 481–527 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Constantin, A., Escher, J.: Analyticity of periodic traveling free surface water waves with vorticity. Ann. Math. 173, 559–568 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Teles da Silva, A., Peregrine, D.: Steep, steady surface waves on water of finite depth with constant vorticity. J. Fluid Mech. 195, 281–302 (1988)

    Article  MathSciNet  Google Scholar 

  14. Constantin, A., Ivanov, R., Prodanov, E.: Nearly-Hamiltonian structure for water waves with constant vorticity. J. Math. Fluid Mech. 9, 1–14 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wahlén, E.: A Hamiltonian formulation of water waves with constant vorticity. Lett. Math. Phys. 79, 303–315 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Benjamin, T., Bridges, T.: Reappraisal of the Kelvin–Helmholtz problem. Part 1. Hamiltonian structure. J. Fluid Mech. 333, 301–325 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Benjamin, T., Bridges, T.: Reappraisal of the Kelvin–Helmholtz problem. Part 2. Interaction of the Kelvin–Helmholtz, superharmonic and Benjamin–Feir instabilities. J. Fluid Mech. 333, 327–373 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Craig, W., Guyenne, P., Kalisch, H.: Hamiltonian long wave expansions for free surfaces and interfaces. Comm. Pure Appl. Math. 24, 1587–1641 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Craig, W., Guyenne, P., Sulem, C.: Coupling between internal and surface waves. Nat. Hazards 57, 617–642 (2011)

    Article  Google Scholar 

  20. Compelli, A.: Hamiltonian formulation of 2 bounded immiscible media with constant non-zero vorticities and a common interface, Wave Motion (2015, to be published)

  21. Constantin, A.: On the modelling of equatorial waves. Geophys. Res. Lett. 39, L05602 (2012)

    Article  Google Scholar 

  22. Constantin, A.: Some nonlinear, equatorially trapped, non-hydrostatic, internal geophysical waves. J. Phys. Oceanogr. 44, 781–789 (2014)

    Article  Google Scholar 

  23. Constantin, A.: An exact solution for equatorially trapped waves. J. Geophys. Res. Ocean. 117, C05029 (2012)

    Article  Google Scholar 

  24. Henry, D.: An exact solution for equatorial geophysical water waves with an underlying current. Eur. J. Mech. B Fluids 38, 18–21 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Henry, D., Ivanov, R.: One-dimensional weakly nonlinear model equations for Rossby waves. Discrete Contin. Dyn. Syst. A 34, 3025–3034 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Henry, D., Hsu, H.-C.: Instability of equatorial water waves in the f-plane. Discrete Contin. Dyn. Syst. 35, 906–916 (2015)

    MathSciNet  MATH  Google Scholar 

  27. Constantin, A., Germain, P.: Instability of some equatorially trapped waves. J. Geophys. Res. Oceans 118, 2802–2810 (2013)

    Article  Google Scholar 

  28. Genoud, F., Henry, D.: Instability of equatorial water waves with an underlying current. J. Math. Fluid Mech. 16, 661–667 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author would like to thank R. Ivanov and E. Prodanov at the Dublin Institute of Technology for their invaluable discussions on matters relating to this article and also thank an anonymous referee for important suggestions which have contributed to improvements in the overall quality of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Compelli.

Additional information

Communicated by A. Constantin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Compelli, A. Hamiltonian approach to the modeling of internal geophysical waves with vorticity. Monatsh Math 179, 509–521 (2016). https://doi.org/10.1007/s00605-014-0724-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-014-0724-1

Keywords

Mathematics Subject Classification

Navigation