Skip to main content
Log in

A Hamiltonian Formulation of Water Waves with Constant Vorticity

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We show that the governing equations for two-dimensional water waves with constant vorticity can be formulated as a canonical Hamiltonian system, in which one of the canonical variables is the surface elevation. This generalizes the well-known formulation due to Zakharov [32] in the irrotational case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benjamin T.B. and Olver P.J. (1982). Hamiltonian structures, symmetries and conservation laws for water waves. J. Fluid Mech. 125: 137–185

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Buffoni B. (2004). Existence and conditional energetic stability of capillary-gravity solitary water waves by minimisation. Arch. Ration. Mech. Anal. 173: 25–68

    Article  MATH  MathSciNet  Google Scholar 

  3. Buffoni B. (2005). Conditional energetic stability of gravity solitary waves in the presence of weak surface tension. Topol. Methods Nonlinear Anal. 25: 41–68

    MATH  MathSciNet  Google Scholar 

  4. Constantin A. (2001). On the deep water wave motion. J. Phys. A 34: 1405–1417

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Constantin, A.: Wave-current interactions. In: EQUADIFF 2003, pp. 207-212. World Scientific, Hackensak, NJ (2005)

  6. Constantin A. (2005). A Hamiltonian formulation for free surface water waves with non-vanishing vorticity. J. Nonl. Math. Phys. 12: 202–211

    MathSciNet  Google Scholar 

  7. Constantin A. (2006). The trajectories of particles in Stokes waves. Invent. Math. 166: 523–535

    Article  MATH  MathSciNet  Google Scholar 

  8. Constantin A. and Escher J. (2004). Symmetry of steady periodic surface water waves with. J. Fluid Mech. 498: 171–181

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Constantin A. and Escher J. (2004). Symmetry of steady deep-water waves with vorticity. Eur. J. Appl. Math. 15: 755–768

    Article  MATH  MathSciNet  Google Scholar 

  10. Constantin, A., Ivanov, R.I., Prodanov, E.M.: Nearly-Hamiltonian structure for water waves with constant vorticity. J. Math. Fluid Mech. (to appear)

  11. Constantin A. and Strauss W. (2004). Exact steady periodic water waves with vorticity. Comm. Pure Appl. Math. 57: 481–527

    Article  MATH  MathSciNet  Google Scholar 

  12. Constantin A., Sattinger D.H. and Strauss W. (2006). Variational formulations for steady water waves with vorticity. J. Fluid Mech. 548: 151–163

    Article  ADS  MathSciNet  Google Scholar 

  13. Craig, W.: Water waves, Hamiltonian systems and Cauchy integrals. In: Microlocal Analysis and Nonlinear Waves (Minneapolis, MN, 1988–1989), pp. 37–45, IMA Volume Mathematical Applications, 30. Springer, New York (1991)

  14. Craig W. and Groves M. (1994). Hamiltonian long-wave approximations to the water-wave problem. Wave Motion 19: 367–389

    Article  MATH  MathSciNet  Google Scholar 

  15. Ehrnström M. (2005). Uniqueness for steady water waves with vorticity. Int. Math. Res. Not. 2005: 3721–3726

    Article  MATH  Google Scholar 

  16. Gerstner F. (1809). Theorie der Wellen samt einer daraus abgeleiteten Theorie der Deichprofile. Ann. Phys. 2: 412–445

    Google Scholar 

  17. Haragus M. and Scheel A. (2002). Finite-wavelength stability of capillary-gravity solitary waves. Comm. Math. Phys. 225: 487–521

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Kolev B. and Sattinger D.H. (2006). Variational principles for water waves. SIAM J. Math. Anal. 38: 906–920

    Article  MathSciNet  Google Scholar 

  19. Lewis D., Marsden J., Montgomery R. and Ratiu T. (1986). The Hamiltonian structure for dynamic free boundary problems. Physica D 18: 391–404

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. Lighthill J. (1978). Waves in Fluids. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  21. Luke J.C. (1967). A variational principle for a fluid with a free surface. J. Fluid Mech. 27: 395–397

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Maddocks J.H. and Pego R.L. (1995). An unconstrained Hamiltonian formulation for incompressible fluid flow. Comm. Math. Phys. 170: 207–217

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. Mielke A. (2002). On the energetic stability of solitary water waves. Phil. Trans. R. Soc. Lond. A 360: 2337–2358

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. Milder D.M. (1977). A note regarding ‘On Hamilton’s principle for water waves’. J. Fluid Mech. 83: 159–161

    Article  MATH  ADS  Google Scholar 

  25. Miles J.W. (1977). On Hamilton’s principle for water waves. J. Fluid Mech. 83: 153–158

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. Stoker J.J. (1957). Water Waves. The Mathematical Theory with Applications. Interscience, New York

    MATH  Google Scholar 

  27. Swan C., Cummins I.P. and James R.L. (2001). An experimental study of two-dimensional surface water waves propagating on depth-varying currents. J. Fluid Mech. 428: 273–304

    Article  MATH  ADS  Google Scholar 

  28. Teles da Silva A.F. and Peregrine D.H. (1988). Steep, steady surface waves on water of finite depth with constant vorticity. J. Fluid Mech. 195: 281–302

    Article  ADS  MathSciNet  Google Scholar 

  29. Thomas, G., Klopman, G.: Wave-current interactions in the nearshore region, in Gravity waves in water of finite depth, pp. 215–319. Southhampton, United Kingdom, (1997)

  30. Wahlén, E.: Steady periodic capillary waves with vorticity. Ark. Mat. (to appear)

  31. Wahlén E. (2006). Steady periodic capillary-gravity waves with vorticity. SIAM J. Math. Anal. 38: 921–943

    Article  MathSciNet  Google Scholar 

  32. Zakharov V.E. (1968). Stability of periodic waves of finite amplitude on the surface of a deep fluid. Zh. Prikl. Mekh. Tekh. Fiz. 9: 86–94

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Wahlén.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wahlén, E. A Hamiltonian Formulation of Water Waves with Constant Vorticity. Lett Math Phys 79, 303–315 (2007). https://doi.org/10.1007/s11005-007-0143-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-007-0143-5

Mathematics Subject Classification (2000)

Keywords

Navigation