Skip to main content
Log in

Recent progress in the optical detection of pathogenic bacteria based on noble metal nanoparticles

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Pathogenic bacteria have become a huge threat to social health and economy for their frighteningly infectious and lethal capacity. It is quite important to make a diagnosis in advance to prevent infection or allow a rapid treatment after infection. Noble metal nanoparticles, due to their unique physicochemical properties, especially optical properties, have drawn a great attention during the past decades and have been widely applied into all kinds of fields related to human health. By utilizing these noble metal nanoparticles, optical diagnosis platforms towards pathogenic bacteria have emerged continually, providing highly sensitive, selective, and particularly facile detection tools for clinic or point-of-care diagnosis. This review summarizes the recent development in this field. It begins with a brief introduction of pathogenic bacteria and noble metal nanoparticles. And then, optical detection methods are systematically discussed in three distinct aspects. In addition to these proof-of-concept methods, corresponding algorithms and point-of-care detection devices are also described. Finally, the review ends up with subjective views on present limitations and some appropriate advice for future research directions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Love TE, Jones B (2008) Introduction to pathogenic bacteria. In: Zourob M, Elwary S, Turner A (eds) Principles of bacterial detection: biosensors, recognition receptors and Microsystems, pp 3–13. https://doi.org/10.1007/978-0-387-75113-9_1

  2. Sai-Anand G, Sivanesan A, Benzigar MR, Singh G, Gopalan A-I, Baskar AV, Ilbeygi H, Ramadass K, Kambala V, Vinu A (2019) Recent progress on the sensing of pathogenic bacteria using advanced nanostructures. Bull Chem Soc Jpn 92(1):216–244. https://doi.org/10.1246/bcsj.20180280

    Article  CAS  Google Scholar 

  3. Mocan T, Matea CT, Pop T, Mosteanu O, Buzoianu AD, Puia C, Iancu C, Mocan L (2017) Development of nanoparticle-based optical sensors for pathogenic bacterial detection. J Nanobiotechnol 15(1):25. https://doi.org/10.1186/s12951-017-0260-y

    Article  CAS  Google Scholar 

  4. Turhan EE, Gursoy T, Ovali F (2015) Factors which affect mortality in neonatal sepsis. Turk Pediatri Ars 50(3):170–175. https://doi.org/10.5152/TurkPediatriArs.2015.2627

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gerdes JS (2004) Diagnosis and management of bacterial infections in the neonate. Pediatr Clin N Am 51(4):939–959, viii-ix. https://doi.org/10.1016/j.pcl.2004.03.009

    Article  Google Scholar 

  6. Floyd K, Falzon D, Fitzpatrick C, Glaziou P, Hiatt T, Lienhardt C, Nguyen L, Sismanidis C, Timimi H (2012) Global Tuberculosis Report 2012. World Health Organization, Geneva

  7. Fogel N (2015) Tuberculosis: a disease without boundaries. Tuberculosis (Edinb) 95(5):527–531. https://doi.org/10.1016/j.tube.2015.05.017

    Article  Google Scholar 

  8. Ribet D, Cossart P (2015) How bacterial pathogens colonize their hosts and invade deeper tissues. Microbes Infect 17(3):173–183. https://doi.org/10.1016/j.micinf.2015.01.004

    Article  CAS  PubMed  Google Scholar 

  9. Anders HJ, Andersen K, Stecher B (2013) The intestinal microbiota, a leaky gut, and abnormal immunity in kidney disease. Kidney Int 83(6):1010–1016. https://doi.org/10.1038/ki.2012.440

    Article  CAS  PubMed  Google Scholar 

  10. Varadi L, Luo JL, Hibbs DE, Perry JD, Anderson RJ, Orenga S, Groundwater PW (2017) Methods for the detection and identification of pathogenic bacteria: past, present, and future. Chem Soc Rev 46(16):4818–4832. https://doi.org/10.1039/c6cs00693k

    Article  CAS  PubMed  Google Scholar 

  11. Jyoti A, Tomar RS (2016) Detection of pathogenic bacteria using nanobiosensors. Environ Chem Lett 15(1):1–6. https://doi.org/10.1007/s10311-016-0594-y

    Article  CAS  Google Scholar 

  12. Ivnitski D, Abdel-Hamid I, Atanasov P, Wilkins E (1999) Biosensors for detection of pathogenic bacteria. Biosens Bioelectron 14(7):599–624. https://doi.org/10.1016/S0956-5663(99)00039-1

    Article  CAS  Google Scholar 

  13. Stewart PS, William Costerton J (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358(9276):135–138. https://doi.org/10.1016/s0140-6736(01)05321-1

    Article  CAS  PubMed  Google Scholar 

  14. Davies J, Davies D (2010) Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 74(3):417–433. https://doi.org/10.1128/MMBR.00016-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Neu HC (1992) The crisis in antibotic-resistance. Science 257(5073):1064–1073. https://doi.org/10.1126/science.257.5073.1064

    Article  CAS  PubMed  Google Scholar 

  16. Sabri NA, Schmitt H, Van der Zaan B, Gerritsen HW, Zuidema T, Rijnaarts HHM, Langenhoff AAM (2020) Prevalence of antibiotics and antibiotic resistance genes in a wastewater effluent-receiving river in the Netherlands. J Environ Chem Eng 8(1):102245. https://doi.org/10.1016/j.jece.2018.03.004

    Article  CAS  Google Scholar 

  17. Dauthal P, Mukhopadhyay M (2016) Noble metal nanoparticles: plant-mediated synthesis, mechanistic aspects of synthesis, and applications. Ind Eng Chem Res 55(36):9557–9577. https://doi.org/10.1021/acs.iecr.6b00861

    Article  CAS  Google Scholar 

  18. Hei H, Wang R, Liu X, He L, Zhang G (2012) Controlled synthesis and characterization of nobel metal nanoparticles. Soft Nanosci Lett 02(03):34–40. https://doi.org/10.4236/snl.2012.23007

    Article  CAS  Google Scholar 

  19. Azharuddin M, Zhu GH, Das D, Ozgur E, Uzun L, Turner APF, Patra HK (2019) A repertoire of biomedical applications of noble metal nanoparticles. Chem Commun (Camb) 55(49):6964–6996. https://doi.org/10.1039/c9cc01741k

    Article  CAS  Google Scholar 

  20. Doria G, Conde J, Veigas B, Giestas L, Almeida C, Assuncao M, Rosa J, Baptista PV (2012) Noble metal nanoparticles for biosensing applications. Sensors (Basel) 12(2):1657–1687. https://doi.org/10.3390/s120201657

    Article  CAS  Google Scholar 

  21. Baker S, Rakshith D, Kavitha KS, Santosh P, Kavitha HU, Rao Y, Satish S (2013) Plants: emerging as nanofactories towards facile route in synthesis of nanoparticles. Bioimpacts 3(3):111–117. https://doi.org/10.5681/bi.2013.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sreeprasad TS, Pradeep T (2013) Noble metal nanoparticles. In: Springer Handbook of Nanomaterials, pp 303–388. https://doi.org/10.1007/978-3-642-20595-8_9

  23. Conde J, Doria G, Baptista P (2012) Noble metal nanoparticles applications in cancer. J Drug Deliv 2012:751075–751012. https://doi.org/10.1155/2012/751075

    Article  CAS  PubMed  Google Scholar 

  24. Sau TK, Rogach AL (2010) Nonspherical noble metal nanoparticles: colloid-chemical synthesis and morphology control. Adv Mater 22(16):1781–1804. https://doi.org/10.1002/adma.200901271

    Article  CAS  PubMed  Google Scholar 

  25. Mahmoud MA, Chamanzar M, Adibi A, El-Sayed MA (2012) Effect of the dielectric constant of the surrounding medium and the substrate on the surface plasmon resonance spectrum and sensitivity factors of highly symmetric systems: silver nanocubes. J Am Chem Soc 134(14):6434–6442. https://doi.org/10.1021/ja300901e

    Article  CAS  PubMed  Google Scholar 

  26. Kango S, Kalia S, Celli A, Njuguna J, Habibi Y, Kumar R (2013) Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—a review. Prog Polym Sci 38(8):1232–1261. https://doi.org/10.1016/j.progpolymsci.2013.02.003

    Article  CAS  Google Scholar 

  27. Sharifi S, Vahed SZ, Ahmadian E, Dizaj SM, Eftekhari A, Khalilov R, Ahmadi M, Hamidi-Asl E, Labib M (2020) Detection of pathogenic bacteria via nanomaterials-modified aptasensors. Biosens Bioelectron 150:111933. https://doi.org/10.1016/j.bios.2019.111933

    Article  CAS  PubMed  Google Scholar 

  28. Du H, Li Z, Wang Y, Yang Q, Wu W (2020) Nanomaterial-based optical biosensors for the detection of foodborne bacteria. Food Rev Int:1–30. https://doi.org/10.1080/87559129.2020.1740733

  29. Yuan P, Ding X, Yang YY, Xu QH (2018) Metal nanoparticles for diagnosis and therapy of bacterial infection. Adv Health Mater 7(13):e1701392. https://doi.org/10.1002/adhm.201701392

    Article  CAS  Google Scholar 

  30. Alafeef M, Moitra P, Pan D (2020) Nano-enabled sensing approaches for pathogenic bacterial detection. Biosens Bioelectron 165:112276. https://doi.org/10.1016/j.bios.2020.112276

    Article  CAS  PubMed  Google Scholar 

  31. Mohseni H, Schneider T, Agahi MH, Stranik O, Csáki A, Razeghi M, Fritzsche W (2011) Noble metal nanoparticles for LSPR-based optical sensing. Paper presented at the Biosensing and Nanomedicine IV,

  32. Jain PK, Huang XH, El-Sayed IH, El-Sayed MA (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41(12):1578–1586. https://doi.org/10.1021/ar7002804

    Article  CAS  PubMed  Google Scholar 

  33. Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297. https://doi.org/10.1146/annurev.physchem.58.032806.104607

    Article  CAS  PubMed  Google Scholar 

  34. Mie G (1908) Beiträge zur Optik trüber Medien speziellkolloidaler Metallösungen. Ann Phys 25

  35. Santopolo G, Domenech-Sanchez A, Russell SM, de la Rica R (2019) Ultrafast and ultrasensitive naked-eye detection of urease-positive bacteria with plasmonic nanosensors. ACS Sens 4(4):961–967. https://doi.org/10.1021/acssensors.9b00063

    Article  CAS  PubMed  Google Scholar 

  36. Grzelczak M, Liz-Marzan LM, Klajn R (2019) Stimuli-responsive self-assembly of nanoparticles. Chem Soc Rev 48(5):1342–1361. https://doi.org/10.1039/c8cs00787j

    Article  CAS  PubMed  Google Scholar 

  37. Bu T, Jia P, Liu J, Liu Y, Sun X, Zhang M, Tian Y, Zhang D, Wang J, Wang L (2019) Diversely positive-charged gold nanoparticles based biosensor: a label-free and sensitive tool for foodborne pathogen detection. Food Chem X 3:100052. https://doi.org/10.1016/j.fochx.2019.100052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Du J, Yu Z, Hu Z, Chen J, Zhao J, Bai Y (2020) A low pH-based rapid and direct colorimetric sensing of bacteria using unmodified gold nanoparticles. J Microbiol Methods 180:106110. https://doi.org/10.1016/j.mimet.2020.106110

    Article  CAS  PubMed  Google Scholar 

  39. Liu Y, Wang J, Song X, Xu K, Chen H, Zhao C, Li J (2018) Colorimetric immunoassay for Listeria monocytogenes by using core gold nanoparticles, silver nanoclusters as oxidase mimetics, and aptamer-conjugated magnetic nanoparticles. Mikrochim Acta 185(8):360. https://doi.org/10.1007/s00604-018-2896-1

    Article  CAS  PubMed  Google Scholar 

  40. Kim YJ, Kim HS, Chon JW, Kim DH, Hyeon JY, Seo KH (2018) New colorimetric aptasensor for rapid on-site detection of campylobacter jejuni and campylobacter coli in chicken carcass samples. Anal Chim Acta 1029:78–85. https://doi.org/10.1016/j.aca.2018.04.059

    Article  CAS  PubMed  Google Scholar 

  41. Zhou Y, Xiao J, Ma X, Wang Q, Zhang Y (2018) An effective established biosensor of bifunctional probes-labeled AuNPs combined with LAMP for detection of fish pathogen Streptococcus iniae. Appl Microbiol Biotechnol 102(12):5299–5308. https://doi.org/10.1007/s00253-018-9016-3

    Article  CAS  PubMed  Google Scholar 

  42. Li F, Li F, Yang G, Aguilar ZP, Lai W, Xu H (2018) Asymmetric polymerase chain assay combined with propidium monoazide treatment and unmodified gold nanoparticles for colorimetric detection of viable emetic Bacillus cereus in milk. Sensors Actuators B Chem 255:1455–1461. https://doi.org/10.1016/j.snb.2017.08.154

    Article  CAS  Google Scholar 

  43. Chen S, Yang X, Fu S, Qin X, Yang T, Man C, Jiang Y (2020) A novel AuNPs colorimetric sensor for sensitively detecting viable Salmonella typhimurium based on dual aptamers. Food Control 15:115. https://doi.org/10.1016/j.foodcont.2020.107281

    Article  CAS  Google Scholar 

  44. Quintela IA, de Los Reyes BG, Lin CS, Wu VCH (2019) Simultaneous colorimetric detection of a variety of Salmonella spp. in food and environmental samples by optical biosensing using oligonucleotide-gold nanoparticles. Front Microbiol 10:1138. https://doi.org/10.3389/fmicb.2019.01138

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wagner PL, Waldor MK (2002) Bacteriophage control of bacterial virulence. Infect Immun 70(8):3985–3993. https://doi.org/10.1128/iai.70.8.3985-3993.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Abedon ST, Kuhl SJ, Blasdel BG, Kutter EM (2011) Phage treatment of human infections. Bacteriophage 1(2):66–85. https://doi.org/10.4161/bact.1.2.15845

    Article  PubMed  PubMed Central  Google Scholar 

  47. van der Merwe RG, van Helden PD, Warren RM, Sampson SL, Gey van Pittius NC (2014) Phage-based detection of bacterial pathogens. Analyst 139(11):2617–2626. https://doi.org/10.1039/c4an00208c

    Article  CAS  PubMed  Google Scholar 

  48. Peng H, Borg RE, Nguyen ABN, Chen IA (2020) Chimeric phage nanoparticles for rapid characterization of bacterial pathogens: detection in complex biological samples and determination of antibiotic sensitivity. ACS Sens 5(5):1491–1499. https://doi.org/10.1021/acssensors.0c00654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yang X, Dang Y, Lou J, Shao H, Jiang X (2018) D-alanyl-D-alanine-modified gold nanoparticles form a broad-Spectrum sensor for bacteria. Theranostics 8(5):1449–1457. https://doi.org/10.7150/thno.22540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zheng L, Qi P, Zhang D (2018) A simple, rapid and cost-effective colorimetric assay based on the 4-mercaptophenylboronic acid functionalized silver nanoparticles for bacteria monitoring. Sensors Actuators B Chem 260:983–989. https://doi.org/10.1016/j.snb.2018.01.115

    Article  CAS  Google Scholar 

  51. Chen Q, Zhang L, Feng Y, Shi F, Wang Y, Wang P, Liu L (2018) Dual-functional peptide conjugated gold nanorods for the detection and photothermal ablation of pathogenic bacteria. J Mater Chem B 6(46):7643–7651. https://doi.org/10.1039/c8tb01835a

    Article  CAS  PubMed  Google Scholar 

  52. Zhou J, Tian F, Fu R, Yang Y, Jiao B, He Y (2020) Enzyme–nanozyme cascade reaction-mediated etching of gold nanorods for the detection of Escherichia coli. ACS Appl Nano Mater 3(9):9016–9025. https://doi.org/10.1021/acsanm.0c01719

    Article  CAS  Google Scholar 

  53. Dehghani Z, Hosseini M, Mohammadnejad J, Bakhshi B, Rezayan AH (2018) Colorimetric aptasensor for campylobacter jejuni cells by exploiting the peroxidase like activity of Au@Pd nanoparticles. Mikrochim Acta 185(10):448. https://doi.org/10.1007/s00604-018-2976-2

    Article  CAS  PubMed  Google Scholar 

  54. Li N, Zhao P, Astruc D (2014) Anisotropic gold nanoparticles: synthesis, properties, applications, and toxicity. Angew Chem Int Ed Eng 53(7):1756–1789. https://doi.org/10.1002/anie.201300441

    Article  CAS  Google Scholar 

  55. Eustis S, El-Sayed MA (2006) Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev 35(3):209–217. https://doi.org/10.1039/b514191e

    Article  CAS  PubMed  Google Scholar 

  56. Wu Y, Xiong Y, Chen X, Luo D, Gao B, Chen J, Huang X, Leng Y, Xiong Y (2019) Plasmonic ELISA based on DNA-directed gold nanoparticle growth for Cronobacter detection in powdered infant formula samples. J Dairy Sci 102(12):10877–10886. https://doi.org/10.3168/jds.2019-17067

    Article  CAS  PubMed  Google Scholar 

  57. You Q, Zhang X, Wu F-G, Chen Y (2019) Colorimetric and test stripe-based assay of bacteria by using vancomycin-modified gold nanoparticles. Sensors Actuators B Chem 281:408–414. https://doi.org/10.1016/j.snb.2018.10.103

    Article  CAS  Google Scholar 

  58. Tan F, Yang Y, Xie X, Wang L, Deng K, Xia X, Yang X, Huang H (2018) Prompting peroxidase-like activity of gold nanorod composites by localized surface plasmon resonance for fast colorimetric detection of prostate specific antigen. Analyst 143(20):5038–5045. https://doi.org/10.1039/c8an00664d

    Article  CAS  PubMed  Google Scholar 

  59. Tanvir F, Yaqub A, Tanvir S, Anderson WA (2017) Colorimetric enumeration of bacterial contamination in water based on β-galactosidase gold nanoshell activity. Enzym Microb Technol 99:49–56. https://doi.org/10.1016/j.enzmictec.2017.01.006

    Article  CAS  Google Scholar 

  60. Gao B, Chen XR, Huang XL, Pei K, Xiong Y, Wu YQ, Duan H, Lai WH, Xiong YH (2019) Urease-induced metallization of gold nanorods for the sensitive detection of Salmonella enterica Choleraesuis through colorimetric ELISA. J Dairy Sci 102(3):1997–2007. https://doi.org/10.3168/jds.2018-15580

    Article  CAS  PubMed  Google Scholar 

  61. Pang B, Zheng Y, Wang J, Liu YS, Song XL, Li JH, Yao S, Fu KY, Xu K, Zhao C, Li J (2019) Colorimetric detection of Staphylococcus aureus using gold nanorods labeled with yolk immunoglobulin and urease, magnetic beads, and a phenolphthalein impregnated test paper. Microchim Acta 186(9):9. https://doi.org/10.1007/s00604-019-3722-0

    Article  CAS  Google Scholar 

  62. Chen Q, Huang FC, Cai GZ, Wang MH, Lin JH (2018) An optical biosensor using immunomagnetic separation, urease catalysis and pH indication for rapid and sensitive detection of Listeria monocytogenes. Sens Actuator B-Chem 258:447–453. https://doi.org/10.1016/j.snb.2017.11.087

    Article  CAS  Google Scholar 

  63. Mazur F, Huy T, Kuchel RP, Chandrawati R (2020) Rapid detection of Listeriolysin O toxin based on a nanoscale liposome-gold nanoparticle platform. Acs Appl Nano Mater 3(7):7270–7280. https://doi.org/10.1021/acsanm.0c01602

    Article  CAS  Google Scholar 

  64. Feng JL, Shen Q, Wu JJ, Dai ZY, Wang Y (2019) Naked-eyes detection of Shigella flexneri in food samples based on a novel gold nanoparticle-based colorimetric aptasensor. Food Control 98:333–341. https://doi.org/10.1016/j.foodcont.2018.11.048

    Article  CAS  Google Scholar 

  65. Mondal B, Ramlal S, Lavu PS, N B, Kingston J (2018) Highly sensitive colorimetric biosensor for staphylococcal enterotoxin B by a label-free Aptamer and gold nanoparticles. Front Microbiol 9. https://doi.org/10.3389/fmicb.2018.00179

  66. Ma XY, Song LJ, Zhou NX, Xia Y, Wang ZP (2017) A novel aptasensor for the colorimetric detection of S. typhimurium based on gold nanoparticles. Int J Food Microbiol 245:1–5. https://doi.org/10.1016/j.ijfoodmicro.2016.12.024

    Article  CAS  PubMed  Google Scholar 

  67. Yang G, Meng X, Wang Y, Yan M, Aguilar ZP, Xu H (2019) 2-step lectin-magnetic separation (LMS) strategy combined with AuNPs-based colorimetric system for S. aureus detection in blood. Sensors Actuators B Chem 279:87–94. https://doi.org/10.1016/j.snb.2018.09.112

    Article  CAS  Google Scholar 

  68. Sadsri V, Trakulsujaritchok T, Tangwattanachuleeporn M, Hoven VP, Nongkhai PN (2020) Simple colorimetric assay for Vibrio parahaemolyticus detection using aptamer-functionalized nanoparticles. Acs Omega 5(34):21437–21442. https://doi.org/10.1021/acsomega.0c01795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Shahbazi R, Salouti M, Amini B, Jalilvand A, Naderlou E, Amini A, Shams A (2018) Highly selective and sensitive detection of Staphylococcus aureus with gold nanoparticle-based core-shell nano biosensor. Mol Cell Probes 41:8–13. https://doi.org/10.1016/j.mcp.2018.07.004

    Article  CAS  PubMed  Google Scholar 

  70. Wang Z, Lu Q, Xu T, Wang F, Huang F, Peng Y, Deng L (2020) G-quadruplex-based assay combined with aptamer and gold nanoparticles for Escherichia coli K88 determination. Mikrochim Acta 187(5):308. https://doi.org/10.1007/s00604-020-04291-x

    Article  CAS  PubMed  Google Scholar 

  71. Zhu L, Li S, Shao X, Feng Y, Xie P, Luo Y, Huang K, Xu W (2019) Colorimetric detection and typing of E. coli lipopolysaccharides based on a dual aptamer-functionalized gold nanoparticle probe. Microchim Acta 186(2):111. https://doi.org/10.1007/s00604-018-3212-9

    Article  CAS  Google Scholar 

  72. Ledlod S, Areekit S, Santiwatanakul S, Chansiri K (2020) Colorimetric aptasensor for detecting Salmonella spp., Listeria monocytogenes, and Escherichia coli in meat samples. Food Sci Technol Int 26(5):430–443. https://doi.org/10.1177/1082013219899593

    Article  CAS  PubMed  Google Scholar 

  73. Peng H, Chen IA (2019) Rapid colorimetric detection of bacterial species through the capture of gold nanoparticles by chimeric phages. ACS Nano 13(2):1244–1252. https://doi.org/10.1021/acsnano.8b06395

    Article  CAS  PubMed  Google Scholar 

  74. Huang J, Sun J, Warden AR, Ding X (2020) Colorimetric and photographic detection of bacteria in drinking water by using 4-mercaptophenylboronic acid functionalized AuNPs. Food Control 108:106885. https://doi.org/10.1016/j.foodcont.2019.106885

    Article  CAS  Google Scholar 

  75. You Y, Lim S, Hahn J, Choi YJ, Gunasekaran S (2018) Bifunctional linker-based immunosensing for rapid and visible detection of bacteria in real matrices. Biosens Bioelectron 100:389–395. https://doi.org/10.1016/j.bios.2017.09.033

    Article  CAS  PubMed  Google Scholar 

  76. Mou XZ, Chen XY, Wang J, Zhang Z, Yang Y, Shou ZX, Tu YX, Du X, Wu C, Zhao Y, Qiu L, Jiang P, Chen C, Huang DS, Li YQ (2019) Bacteria-instructed click chemistry between functionalized gold nanoparticles for point-of-care microbial detection. ACS Appl Mater Interfaces 11(26):23093–23101. https://doi.org/10.1021/acsami.9b09279

    Article  CAS  PubMed  Google Scholar 

  77. Wei S, Li J, He J, Zhao W, Wang F, Song X, Xu K, Wang J, Zhao C (2020) Paper chip-based colorimetric assay for detection of Salmonella typhimurium by combining aptamer-modified Fe3O4@Ag nanoprobes and urease activity inhibition. Mikrochim Acta 187(10):554. https://doi.org/10.1007/s00604-020-04537-8

    Article  CAS  PubMed  Google Scholar 

  78. Yao S, Li J, Pang B, Wang X, Shi Y, Song X, Xu K, Wang J, Zhao C (2020) Colorimetric immunoassay for rapid detection of Staphylococcus aureus based on etching-enhanced peroxidase-like catalytic activity of gold nanoparticles. Microchim Acta 187(9):504. https://doi.org/10.1007/s00604-020-04473-7

    Article  CAS  Google Scholar 

  79. Das R, Chaterjee B, Kapil A, Sharma TK (2020) Aptamer-nanozyme mediated sensing platform for the rapid detection of Escherichia coli in fruit juice. Sens Bio-Sens Res 27:100313. https://doi.org/10.1016/j.sbsr.2019.100313

    Article  Google Scholar 

  80. Das R, Dhiman A, Kapil A, Bansal V, Sharma TK (2019) Aptamer-mediated colorimetric and electrochemical detection of Pseudomonas aeruginosa utilizing peroxidase-mimic activity of gold nanozyme. Anal Bioanal Chem 411(6):1229–1238. https://doi.org/10.1007/s00216-018-1555-z

    Article  CAS  PubMed  Google Scholar 

  81. Raman CV, Krishnan KS (1928) A new type of secondary radiation. Nature 121:501–502. https://doi.org/10.1038/121501c0

    Article  CAS  Google Scholar 

  82. Prochazka M (2016) Basics of Raman scattering (RS) spectroscopy. In: Surface-enhanced Raman spectroscopy. Biological and Medical Physics, Biomedical Engineering, pp 7–19. https://doi.org/10.1007/978-3-319-23992-7_2

  83. Campion A, Kambhampati P (1998) Surface-enhanced Raman scattering. Chem Soc Rev 27(4):241. https://doi.org/10.1039/a827241z

    Article  CAS  Google Scholar 

  84. Fleischmann M, Hendra PJ, McQuillan AJ (1974) RAMAN-SPECTRA OF PYRIDINE ADSORBED AT A SILVER ELECTRODE. Chem Phys Lett 26(2):163–166. https://doi.org/10.1016/0009-2614(74)85388-1

    Article  CAS  Google Scholar 

  85. Akanny E, Bonhommé A, Bessueille F, Bourgeois S, Bordes C (2020) Surface enhanced Raman spectroscopy for bacteria analysis: a review. Appl Spectrosc Rev:1–43. https://doi.org/10.1080/05704928.2020.1796698

  86. Akanny E, Bonhommé A, Commun C, Doleans-Jordheim A, Bessueille F, Bourgeois S, Bordes C (2019) Development of uncoated near-spherical gold nanoparticles for the label-free quantification of Lactobacillus rhamnosus GG by surface-enhanced Raman spectroscopy. Anal Bioanal Chem 411(21):5563–5576. https://doi.org/10.1007/s00216-019-01938-4

    Article  CAS  PubMed  Google Scholar 

  87. Wang C, Gu B, Liu Q, Pang Y, Xiao R, Wang S (2018) Combined use of vancomycin-modified Ag-coated magnetic nanoparticles and secondary enhanced nanoparticles for rapid surface-enhanced Raman scattering detection of bacteria. Int J Nanomedicine 13:1159–1178. https://doi.org/10.2147/ijn.S150336

    Article  PubMed  PubMed Central  Google Scholar 

  88. Franco D, De Plano LM, Rizzo MG, Scibilia S, Lentini G, Fazio E, Neri F, Guglielmino SPP, Mezzasalma AM (2020) Bio-hybrid gold nanoparticles as SERS probe for rapid bacteria cell identification. Spectrochim Acta A Mol Biomol Spectrosc 224:117394. https://doi.org/10.1016/j.saa.2019.117394

    Article  CAS  PubMed  Google Scholar 

  89. Pramanik A, Davis D, Patibandla S, Begum S, Ray P, Gates K, Gao Y, Chandra Ray P (2020) A WS2-gold nanoparticle heterostructure-based novel SERS platform for the rapid identification of antibiotic-resistant pathogens. Nanoscale Adv 2(5):2025–2033. https://doi.org/10.1039/d0na00141d

    Article  CAS  Google Scholar 

  90. Huang D, Zhuang Z, Wang Z, Li S, Zhong H, Liu Z, Guo Z, Zhang W (2019) Black phosphorus-Au filter paper-based three-dimensional SERS substrate for rapid detection of foodborne bacteria. Appl Surf Sci 497:143825. https://doi.org/10.1016/j.apsusc.2019.143825

    Article  CAS  Google Scholar 

  91. Pramanik A, Gao Y, Gates K, Begum S, Ray PC (2019) Giant chemical and excellent synergistic Raman enhancement from a 3D MoS2-x O x -gold nanoparticle hybrid. ACS Omega 4(6):11112–11118. https://doi.org/10.1021/acsomega.9b00866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Jones S, Pramanik A, Kanchanapally R, Viraka Nellore BP, Begum S, Sweet C, Ray PC (2017) Multifunctional three-dimensional chitosan/gold nanoparticle/Graphene oxide architecture for separation, label-free SERS identification of pharmaceutical contaminants, and effective killing of superbugs. ACS Sustain Chem Eng 5(8):7175–7187. https://doi.org/10.1021/acssuschemeng.7b01351

    Article  CAS  Google Scholar 

  93. Li Y, Guo Y, Ye B, Zhuang Z, Lan P, Zhang Y, Zhong H, Liu H, Guo Z, Liu Z (2020) Rapid label-free SERS detection of foodborne pathogenic bacteria based on hafnium ditelluride-Au nanocomposites. J Innov Opti Health Sci 13(05). https://doi.org/10.1142/s1793545820410047

  94. Liao W, Lin Q, Xie S, He Y, Tian Y, Duan Y (2018) A novel strategy for rapid detection of bacteria in water by the combination of three-dimensional surface-enhanced Raman scattering (3D SERS) and laser induced breakdown spectroscopy (LIBS). Anal Chim Acta 1043:64–71. https://doi.org/10.1016/j.aca.2018.06.058

    Article  CAS  PubMed  Google Scholar 

  95. Yan Y, Nie Y, An L, Tang YQ, Xu Z, Wu XL (2020) Improvement of surface-enhanced Raman scattering method for single bacterial cell analysis. Front Bioeng Biotechnol 8:573777. https://doi.org/10.3389/fbioe.2020.573777

    Article  PubMed  PubMed Central  Google Scholar 

  96. You S-M, Luo K, Jung J-Y, Jeong K-B, Lee E-S, Oh M-H, Kim Y-R (2020) Gold nanoparticle-coated starch magnetic beads for the separation, concentration, and SERS-based detection of E. coli O157:H7. ACS Appl Mater Interfaces 12(16):18292–18300. https://doi.org/10.1021/acsami.0c00418

    Article  CAS  PubMed  Google Scholar 

  97. Wang Y, Yan B, Chen L (2013) SERS tags: novel optical nanoprobes for bioanalysis. Chem Rev 113(3):1391–1428. https://doi.org/10.1021/cr300120g

    Article  CAS  PubMed  Google Scholar 

  98. Diaz-Amaya S, Lin LK, Deering AJ, Stanciu LA (2019) Aptamer-based SERS biosensor for whole cell analytical detection of E. coli O157:H7. Anal Chim Acta 1081:146–156. https://doi.org/10.1016/j.aca.2019.07.028

    Article  CAS  PubMed  Google Scholar 

  99. Liu H, Liu T, Zhang L, Han L, Gao C, Yin Y (2015) Etching-free epitaxial growth of gold on silver nanostructures for high chemical stability and plasmonic activity. Adv Funct Mater 25(34):5435–5443. https://doi.org/10.1002/adfm.201502366

    Article  CAS  Google Scholar 

  100. Liu HB, Chen CY, Zhang CN, Du XJ, Li P, Wang S (2019) Functionalized Au(MBA) @Ag nanoparticles as an optical and SERS dual probe in a lateral flow strip for the quantitative detection of Escherichia coli O157:H7. J Food Sci 84(10):2916–2924. https://doi.org/10.1111/1750-3841.14766

    Article  CAS  PubMed  Google Scholar 

  101. Zhou S, Lu C, Li Y, Xue L, Zhao C, Tian G, Bao Y, Tang L, Lin J, Zheng J (2020) Gold nanobones enhanced ultrasensitive surface-enhanced Raman scattering aptasensor for detecting Escherichia coli O157:H7. ACS Sens 5(2):588–596. https://doi.org/10.1021/acssensors.9b02600

    Article  CAS  PubMed  Google Scholar 

  102. Shi L, Xu L, Xiao R, Zhou Z, Wang C, Wang S, Gu B (2020) Rapid, quantitative, high-sensitive detection of Escherichia coli O157:H7 by gold-Shell silica-Core Nanospheres-based surface-enhanced Raman scattering lateral flow immunoassay. Front Microbiol 11:596005. https://doi.org/10.3389/fmicb.2020.596005

    Article  PubMed  PubMed Central  Google Scholar 

  103. Zhu T, Hu Y, Yang K, Dong N, Yu M, Jiang N (2017) A novel SERS nanoprobe based on the use of core-shell nanoparticles with embedded reporter molecule to detect E. coli O157:H7 with high sensitivity. Mikrochim Acta 185(1):30. https://doi.org/10.1007/s00604-017-2573-9

    Article  CAS  PubMed  Google Scholar 

  104. Pang Y, Wan N, Shi L, Wang C, Sun Z, Xiao R, Wang S (2019) Dual-recognition surface-enhanced Raman scattering(SERS)biosensor for pathogenic bacteria detection by using vancomycin-SERS tags and aptamer-Fe3O4@au. Anal Chim Acta 1077:288–296. https://doi.org/10.1016/j.aca.2019.05.059

    Article  CAS  PubMed  Google Scholar 

  105. Duan N, Shen M, Qi S, Wang W, Wu S, Wang Z (2020) A SERS aptasensor for simultaneous multiple pathogens detection using gold decorated PDMS substrate. Spectrochim Acta A Mol Biomol Spectrosc 230:118103. https://doi.org/10.1016/j.saa.2020.118103

    Article  CAS  PubMed  Google Scholar 

  106. Tanis SN, Ilhan H, Guven B, Tayyarcan EK, Ciftci H, Saglam N, Hakki Boyaci I, Tamer U (2020) A disposable gold-cellulose nanofibril platform for SERS mapping. Anal Methods 12(24):3164–3172. https://doi.org/10.1039/d0ay00662a

    Article  CAS  PubMed  Google Scholar 

  107. Liao W, Lin Q, Xu Y, Yang E, Duan Y (2019) Preparation of au@Ag core-shell nanoparticle decorated silicon nanowires for bacterial capture and sensing combined with laser induced breakdown spectroscopy and surface-enhanced Raman spectroscopy. Nanoscale 11(12):5346–5354. https://doi.org/10.1039/c9nr00019d

    Article  CAS  PubMed  Google Scholar 

  108. Xu X, Ma X, Wang H, Wang Z (2018) Aptamer based SERS detection of Salmonella typhimurium using DNA-assembled gold nanodimers. Mikrochim Acta 185(7):325. https://doi.org/10.1007/s00604-018-2852-0

    Article  CAS  PubMed  Google Scholar 

  109. Li H, Chen Q, Ouyang Q, Zhao J (2017) Fabricating a novel Raman spectroscopy-based aptasensor for rapidly sensing Salmonella typhimurium. Food Anal Methods 10(9):3032–3041. https://doi.org/10.1007/s12161-017-0864-8

    Article  Google Scholar 

  110. Zukovskaja O, Agafilushkina S, Sivakov V, Weber K, Cialla-May D, Osminkina L, Popp J (2019) Rapid detection of the bacterial biomarker pyocyanin in artificial sputum using a SERS-active silicon nanowire matrix covered by bimetallic noble metal nanoparticles. Talanta 202:171–177. https://doi.org/10.1016/j.talanta.2019.04.047

    Article  CAS  PubMed  Google Scholar 

  111. Bozkurt AG, Buyukgoz GG, Soforoglu M, Tamer U, Suludere Z, Boyaci IH (2018) Alkaline phosphatase labeled SERS active sandwich immunoassay for detection of Escherichia coli. Spectrochim Acta A Mol Biomol Spectrosc 194:8–13. https://doi.org/10.1016/j.saa.2017.12.057

    Article  CAS  PubMed  Google Scholar 

  112. Wang XY, Yang JY, Wang YT, Zhang HC, Chen ML, Yang T, Wang JH (2021) M13 phage-based nanoprobe for SERS detection and inactivation of Staphylococcus aureus. Talanta 221:121668. https://doi.org/10.1016/j.talanta.2020.121668

    Article  CAS  PubMed  Google Scholar 

  113. Ma X, Xu X, Xia Y, Wang Z (2018) SERS aptasensor for Salmonella typhimurium detection based on spiny gold nanoparticles. Food Control 84:232–237. https://doi.org/10.1016/j.foodcont.2017.07.016

    Article  CAS  Google Scholar 

  114. Wang Y, Li Q, Zhang R, Tang K, Ding C, Yu S (2020) SERS-based immunocapture and detection of pathogenic bacteria using a boronic acid-functionalized polydopamine-coated Au@Ag nanoprobe. Mikrochim Acta 187(5):290. https://doi.org/10.1007/s00604-020-04248-0

    Article  CAS  PubMed  Google Scholar 

  115. Drexhage KH (1974) IV interaction of light with monomolecular dye layers. In: Progress in Optics, pp 163–232. https://doi.org/10.1016/s0079-6638(08)70266-x

  116. Gryczynski I, Malicka J, Shen YB, Gryczynski Z, Lakowicz JR (2002) Multiphoton excitation of fluorescence near metallic particles: enhanced and localized excitation. J Phys Chem B 106(9):2191–2195. https://doi.org/10.1021/jp013013n

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Aslan K, Gryczynski I, Malicka J, Matveeva E, Lakowicz JR, Geddes CD (2005) Metal-enhanced fluorescence: an emerging tool in biotechnology. Curr Opin Biotechnol 16(1):55–62. https://doi.org/10.1016/j.copbio.2005.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Clegg RM (1995) Fluorescence resonance energy transfer. Curr Opin Biotechnol 6(1):103–110. https://doi.org/10.1016/0958-1669(95)80016-6

    Article  CAS  PubMed  Google Scholar 

  119. Yun CS, Javier A, Jennings T, Fisher M, Hira S, Peterson S, Hopkins B, Reich NO, Strouse GF (2005) Nanometal surface energy transfer in optical rulers, breaking the FRET barrier. J Am Chem Soc 127(9):3115–3119. https://doi.org/10.1021/ja043940i

    Article  CAS  PubMed  Google Scholar 

  120. Chen C, Midelet C, Bhuckory S, Hildebrandt N, Werts MHV (2018) Nanosurface energy transfer from long-lifetime terbium donors to gold nanoparticles. J Phys Chem C 122(30):17566–17574. https://doi.org/10.1021/acs.jpcc.8b06539

    Article  CAS  Google Scholar 

  121. Zhang J, Fu Y, Lakowicz JR (2007) Enhanced Forster resonance energy transfer (FRET) on a single metal particle. J Phys Chem C 111(1):50–56. https://doi.org/10.1021/jp062665e

    Article  CAS  Google Scholar 

  122. Lessard-Viger M, Rioux M, Rainville L, Boudreau D (2009) FRET enhancement in multilayer core-shell nanoparticles. Nano Lett 9(8):3066–3071. https://doi.org/10.1021/nl901553u

    Article  CAS  PubMed  Google Scholar 

  123. Yu M, Wang H, Fu F, Li L, Li J, Li G, Song Y, Swihart MT, Song E (2017) Dual-recognition Förster resonance energy transfer based platform for one-step sensitive detection of pathogenic bacteria using fluorescent vancomycin–gold Nanoclusters and aptamer–gold nanoparticles. Anal Chem 89(7):4085–4090. https://doi.org/10.1021/acs.analchem.6b04958

    Article  CAS  PubMed  Google Scholar 

  124. Mathew A, Pradeep T (2014) Noble metal clusters: applications in energy, environment, and biology. Part Part Syst Charact 31(10):1017–1053. https://doi.org/10.1002/ppsc.201400033

    Article  CAS  Google Scholar 

  125. Heli B, Ajji A (2020) Toward a nanopaper-based and solid phase immunoassay using FRET for the rapid detection of bacteria. Sci Rep 10(1):14367. https://doi.org/10.1038/s41598-020-71285-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Xu S, Huang S, He Q, Wang L (2015) Upconversion nanophosphores for bioimaging. TrAC Trends Anal Chem 66:72–79. https://doi.org/10.1016/j.trac.2014.11.014

    Article  CAS  Google Scholar 

  127. Jin B, Wang S, Lin M, Jin Y, Zhang S, Cui X, Gong Y, Li A, Xu F, Lu TJ (2017) Upconversion nanoparticles based FRET aptasensor for rapid and ultrasenstive bacteria detection. Biosens Bioelectron 90:525–533. https://doi.org/10.1016/j.bios.2016.10.029

    Article  CAS  PubMed  Google Scholar 

  128. Wu ZZ (2019) A dual-mode (fluorometric and colorimetric) aptasensor for Vibrio parahaemolyticus detection using multifunctional nanoparticles. Food Anal Methods 12(7):1577–1584. https://doi.org/10.1007/s12161-019-01483-x

    Article  Google Scholar 

  129. Srinivasan S, Ranganathan V, DeRosa MC, Murari BM (2018) Label-free aptasensors based on fluorescent screening assays for the detection of Salmonella typhimurium. Anal Biochem 559:17–23. https://doi.org/10.1016/j.ab.2018.08.002

    Article  CAS  PubMed  Google Scholar 

  130. Ellairaja S, Krithiga N, Ponmariappan S, Vasantha VS (2017) Novel pyrimidine tagged silver nanoparticle based fluorescent immunoassay for the detection of Pseudomonas aeruginosa. J Agric Food Chem 65(8):1802–1812. https://doi.org/10.1021/acs.jafc.6b04790

    Article  CAS  PubMed  Google Scholar 

  131. Li X, Zhao C, Liu Y, Li Y, Lian F, Wang D, Zhang Y, Wang J, Song X, Li J, Yang Y, Xu K (2019) Fluorescence signal amplification assay for the detection of B. melitensis 16M, based on peptide-mediated magnetic separation technology and a AuNP-mediated bio-barcode assembled by quantum dot technology. Analyst 144(8):2704–2715. https://doi.org/10.1039/c9an00028c

    Article  CAS  PubMed  Google Scholar 

  132. Pebdeni AB, Hosseini M, Ganjali MR (2020) Fluorescent turn-on aptasensor of staphylococcus aureus based on the FRET between green carbon quantum dot and gold nanoparticle. Food Anal Methods 13(11):2070–2079. https://doi.org/10.1007/s12161-020-01821-4

    Article  Google Scholar 

  133. Liu Y, Zhao C, Fu K, Song X, Xu K, Wang J, Li J (2017) Selective turn-on fluorescence detection of Vibrio parahaemolyticus in food based on charge-transfer between CdSe/ZnS quantum dots and gold nanoparticles. Food Control 80:380–387. https://doi.org/10.1016/j.foodcont.2017.05.032

    Article  CAS  Google Scholar 

  134. Elahi N, Kamali M, Baghersad MH, Amini B (2019) A fluorescence nano-biosensors immobilization on Iron (MNPs) and gold (AuNPs) nanoparticles for detection of Shigella spp. Mater Sci Eng C 105:110113. https://doi.org/10.1016/j.msec.2019.110113

    Article  CAS  Google Scholar 

  135. Deng W, Xie F, Baltar HT, Goldys EM (2013) Metal-enhanced fluorescence in the life sciences: here, now and beyond. Phys Chem Chem Phys 15(38):15695–15708. https://doi.org/10.1039/c3cp50206f

    Article  CAS  PubMed  Google Scholar 

  136. Battista E, Coluccio ML, Alabastri A, Barberio M, Causa F, Netti PA, Di Fabrizio E, Gentile F (2017) Metal enhanced fluorescence on super-hydrophobic clusters of gold nanoparticles. Microelectron Eng 175:7–11. https://doi.org/10.1016/j.mee.2016.12.013

    Article  CAS  Google Scholar 

  137. Matsui K, Tanabe S, Sun S, Nguyen D, Kinoshita T, Yamamoto Y, Shiigi H (2020) Development of metal nanoparticle-immobilized microplate for high-throughput and highly sensitive fluorescence analysis. Anal Sci 36(12):1461–1465. https://doi.org/10.2116/analsci.20P225

    Article  CAS  PubMed  Google Scholar 

  138. Abdi H, Williams LJ (2010) Principal component analysis. Wiley Interdiscip Rev Comput Stat 2(4):433–459. https://doi.org/10.1002/wics.101

    Article  Google Scholar 

  139. Fisher RA (1936) The use of multiple measurements in taxonomic problems. Ann Eugenics 7:179–188. https://doi.org/10.1111/j.1469-1809.1936.tb02137.x

    Article  Google Scholar 

  140. Lee LC, Liong CY, Jemain AA (2018) Partial least squares-discriminant analysis (PLS-DA) for classification of high-dimensional (HD) data: a review of contemporary practice strategies and knowledge gaps. Analyst 143(15):3526–3539. https://doi.org/10.1039/c8an00599k

    Article  CAS  PubMed  Google Scholar 

  141. Zheng DW, Liu XY, Zhang P, Su L, Wang LM, Wei XD, Wang HQ, Lin TF (2018) Rapid identification of mixed enteropathogenic bacteria by means of au nanoparticles@bacteria using portable Raman spectrometer. J Nanosci Nanotechnol 18(10):6776–6785. https://doi.org/10.1166/jnn.2018.15510

    Article  CAS  PubMed  Google Scholar 

  142. Li B, Li X, Dong Y, Wang B, Li D, Shi Y, Wu Y (2017) Colorimetric sensor array based on gold nanoparticles with diverse surface charges for microorganisms identification. Anal Chem 89(20):10639–10643. https://doi.org/10.1021/acs.analchem.7b02594

    Article  CAS  PubMed  Google Scholar 

  143. Yan P, Ding Z, Li X, Dong Y, Fu T, Wu Y (2019) Colorimetric sensor array based on wulff-type boronate functionalized AgNPs at various pH for bacteria identification. Anal Chem 91(19):12134–12137. https://doi.org/10.1021/acs.analchem.9b03172

    Article  CAS  PubMed  Google Scholar 

  144. Villa JEL, Quinones NR, Fantinatti-Garboggini F, Poppi RJ (2019) Fast discrimination of bacteria using a filter paper-based SERS platform and PLS-DA with uncertainty estimation. Anal Bioanal Chem 411(3):705–713. https://doi.org/10.1007/s00216-018-1485-9

    Article  CAS  PubMed  Google Scholar 

  145. Chisanga M, Linton D, Muhamadali H, Ellis DI, Kimber RL, Mironov A, Goodacre R (2020) Rapid differentiation of campylobacter jejuni cell wall mutants using Raman spectroscopy, SERS and mass spectrometry combined with chemometrics. Analyst 145(4):1236–1249. https://doi.org/10.1039/c9an02026h

    Article  CAS  PubMed  Google Scholar 

  146. Lin C-C, Lin C-Y, Kao C-J, Hung C-H (2017) High efficiency SERS detection of clinical microorganism by AgNPs-decorated filter membrane and pattern recognition techniques. Sensors Actuators B Chem 241:513–521. https://doi.org/10.1016/j.snb.2016.09.183

    Article  CAS  Google Scholar 

  147. Yang D, Zhou H, Dina NE, Haisch C (2018) Portable bacteria-capturing chip for direct surface-enhanced Raman scattering identification of urinary tract infection pathogens. R Soc Open Sci 5(9):180955. https://doi.org/10.1098/rsos.180955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Ding X, Mauk MG, Yin K, Kadimisetty K, Liu CC (2019) Interfacing pathogen detection with smartphones for point-of-care applications. Anal Chem 91(1):655–672. https://doi.org/10.1021/acs.analchem.8b04973

    Article  CAS  PubMed  Google Scholar 

  149. Sajid M, Kawde A-N, Daud M (2015) Designs, formats and applications of lateral flow assay: a literature review. J Saudi Chem Soc 19(6):689–705. https://doi.org/10.1016/j.jscs.2014.09.001

    Article  Google Scholar 

  150. Bahadır EB, Sezgintürk MK (2016) Lateral flow assays: principles, designs and labels. TrAC Trends Anal Chem 82:286–306. https://doi.org/10.1016/j.trac.2016.06.006

    Article  CAS  Google Scholar 

  151. Parolo C, Sena-Torralba A, Bergua JF, Calucho E, Fuentes-Chust C, Hu L, Rivas L, Alvarez-Diduk R, Nguyen EP, Cinti S, Quesada-Gonzalez D, Merkoci A (2020) Tutorial: design and fabrication of nanoparticle-based lateral-flow immunoassays. Nat Protoc 15(12):3788–3816. https://doi.org/10.1038/s41596-020-0357-x

    Article  CAS  PubMed  Google Scholar 

  152. Lu C, Gao X, Chen Y, Ren J, Liu C (2019) Aptamer-based lateral flow test strip for the simultaneous detection of Salmonella typhimurium, Escherichia coli O157:H7 and Staphylococcus aureus. Anal Lett 53(4):646–659. https://doi.org/10.1080/00032719.2019.1663528

    Article  CAS  Google Scholar 

  153. Liu HB, Du XJ, Zang YX, Li P, Wang S (2017) SERS-based lateral flow strip biosensor for simultaneous detection of Listeria monocytogenes and Salmonella enterica serotype enteritidis. J Agric Food Chem 65(47):10290–10299. https://doi.org/10.1021/acs.jafc.7b03957

    Article  CAS  PubMed  Google Scholar 

  154. Wang R, Kim K, Choi N, Wang X, Lee J, Jeon JH, G-e R, Choo J (2018) Highly sensitive detection of high-risk bacterial pathogens using SERS-based lateral flow assay strips. Sensors Actuators B Chem 270:72–79. https://doi.org/10.1016/j.snb.2018.04.162

    Article  CAS  Google Scholar 

  155. Rodriguez-Quijada C, Lyons C, Santamaria C, Quinn S, Tlusty MF, Shiaris M, Hamad-Schifferli K (2020) Optimization of paper-based nanoparticle immunoassays for direct detection of the bacterial pathogen V. parahaemolyticus in oyster hemolymph. Anal Methods 12(23):3056–3063. https://doi.org/10.1039/d0ay00725k

    Article  CAS  PubMed  Google Scholar 

  156. Luo K, Ryu J, Seol IH, Jeong KB, You SM, Kim YR (2019) Paper-based radial chromatographic immunoassay for the detection of pathogenic bacteria in milk. ACS Appl Mater Interfaces 11(50):46472–46478. https://doi.org/10.1021/acsami.9b16075

    Article  CAS  PubMed  Google Scholar 

  157. Zheng L, Cai G, Qi W, Wang S, Wang M, Lin J (2019) Optical biosensor for rapid detection of Salmonella typhimurium based on porous gold@platinum nanocatalysts and a 3D fluidic chip. ACS Sensors 5(1):65–72. https://doi.org/10.1021/acssensors.9b01472

    Article  CAS  Google Scholar 

  158. Jalali M, AbdelFatah T, Mahshid SS, Labib M, Sudalaiyadum Perumal A, Mahshid S (2018) A hierarchical 3D nanostructured microfluidic device for sensitive detection of pathogenic bacteria. Small 14(35):e1801893. https://doi.org/10.1002/smll.201801893

    Article  CAS  PubMed  Google Scholar 

  159. Amin N, Torralba AS, Alvarez-Diduk R, Afkhami A, Merkoci A (2020) Lab in a tube: point-of-care detection of Escherichia coli. Anal Chem 92(6):4209–4216. https://doi.org/10.1021/acs.analchem.9b04369

    Article  CAS  PubMed  Google Scholar 

  160. Cheng N, Song Y, Zeinhom MMA, Chang YC, Sheng L, Li H, Du D, Li L, Zhu MJ, Luo Y, Xu W, Lin Y (2017) Nanozyme-mediated dual immunoassay integrated with smartphone for use in simultaneous detection of pathogens. ACS Appl Mater Interfaces 9(46):40671–40680. https://doi.org/10.1021/acsami.7b12734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China under grant No. 61675162, Natural Science Basic Research Plan in Shaanxi Province of China under grant No.2021JM-024. This work was also supported by the Zhejiang Province Basic Public Welfare Research Project (LGF20H180017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Jun Li.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, SZ., Liu, QA., Liu, YL. et al. Recent progress in the optical detection of pathogenic bacteria based on noble metal nanoparticles. Microchim Acta 188, 258 (2021). https://doi.org/10.1007/s00604-021-04885-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04885-z

Keywords

Navigation