Skip to main content
Log in

Nanosorbent-based solid phase microextraction techniques for the monitoring of emerging organic contaminants in water and wastewater samples

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

This review (including 127 refs) summarizes applications of nanosorbent-based solid phase microextraction (SPME) for the cleanup, extraction, and quantification of Emerging Organic Contaminants (EOCs). SPME is the most widely used technique for the analysis of EOCs from water samples. The selection of sorbent material plays a key role in SPME applications. Here, we have collected information about recent developments in the application of nanosorbents in the SPME technique used for the extraction of EOCs from water and wastewater samples. In this review, the preparation, properties, advantages, and limitations of nanosorbents used in SPME applications are evaluated and discussed. Besides, the applications of these nanosorbents in SPME-based extraction techniques and their analytical characteristics for the determination of EOCs are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Albero B, Sánchez-Brunete C, García-Valcárcel AI, Pérez RA, Tadeo JL (2015) Ultrasound-assisted extraction of emerging contaminants from environmental samples. TrAC Trends Anal Chem 71:110–118

    Article  CAS  Google Scholar 

  2. Martín-Pozo L, de Alarcón-Gómez B, Rodríguez-Gómez R, García-Córcoles MT, Çipa M, Zafra-Gómez A (2019) Analytical methods for the determination of emerging contaminants in sewage sludge samples. A review. Talanta 192:508–533

  3. Coats JR, Pesticide degradation mechanisms and environmental activation, ACS Symposium Series, Vol. 459. DOI: https://doi.org/10.1021/bk-1991-0459.ch002

  4. Nouri N, Khorram P, Duman O, Tunç S, Sereshti H (2020) Overview of nanosorbents used in solid phase extraction techniques for the monitoring of emerging organic contaminants in water and wastewater samples. Trends Environ Anal Chem 25:e00081

    Article  CAS  Google Scholar 

  5. Núñez M, Borrull F, Pocurull E, Fontanals N (2017) Sample treatment for the determination of emerging organic contaminants in aquatic organisms. TrAC-Trends Anal Chem 97:136–145

    Article  CAS  Google Scholar 

  6. Lapworth DJ, Baran N, Stuart ME, Ward RS (2012) Emerging organic contaminants in groundwater: a review of sources, fate and occurrence. Environmental Pollution Volume 163:287–303

    Article  CAS  Google Scholar 

  7. Jurado A, Vàzquez-Suñé E, Carrera J, López de Alda M, Barceló D (2012) Emerging organic contaminants in groundwater in Spain: a review of sources, recent occurrence and fate in a European context. Sci Total Environ 4401:82–94

    Article  CAS  Google Scholar 

  8. Matamoros V, Calderón-Preciado D, Domínguez C, Bayona JM (2012) Analytical procedures for the determination of emerging organic contaminants in plant material: a review. Anal Chim Acta 72213:8–20

    Article  CAS  Google Scholar 

  9. Wang B, Zhao Y, Lan Z, Yao Y, Sun H (2016) Sampling methods of emerging organic contaminants in indoor air. Trends Environ Anal Chem 12:13–22

    Article  CAS  Google Scholar 

  10. Murtada K (2020) Trends in nanomaterial-based solid-phase microextraction with a focus on environmental applications—a review. Trends Environ Anal Chem 25:e00077

    Article  CAS  Google Scholar 

  11. Spietelun A, Kloskowski A, Chrzanowski W, Namiesńik J (2013) Understanding solid-phase microextraction: key factors influencing the extraction process and trends in improving the technique. Chem Rev 113:1667–1685

    Article  CAS  PubMed  Google Scholar 

  12. Piri-Moghadam H, Ahmadi F, Pawliszyn J (2016) A critical review of solid phase microextraction for analysis of water samples. TrAC-Trends Anal Chem 85:133–143

    Article  CAS  Google Scholar 

  13. Al-Khshemawee H, Du X, Agarwal M, Yang JO, Ren YL (2018) Application of direct immersion solid-phase microextraction (DI-SPME) for understanding biological changes of Mediterranean fruit fly (Ceratitis capitata) during mating procedures. Molecules 23:2951

    Article  PubMed Central  CAS  Google Scholar 

  14. Pawliszyn J (2012) Handbook of solid phase microextraction. Elsevier, Amsterdam

    Google Scholar 

  15. Eugênia M, Queiroz C, de Souza ID, Marchioni C (2019) Current advances and applications of in-tube solid-phase microextraction. TrAC-Trends Anal Chem 111:261–278

    Article  CAS  Google Scholar 

  16. Kloskowski A, Pilarczyk M, Namies’nik J (2009) Membrane solid-phase microextractions—a new concept of sorbent preparation. Anal Chem 81:7363–7367

    Article  CAS  PubMed  Google Scholar 

  17. Bruheim I, Liu X, Pawliszyn J (2003) Thin-film microextraction. Anal Chem 75:1002–1010

    Article  CAS  PubMed  Google Scholar 

  18. Ghorbani M, Aghamohammadhassan M, Chamsaz M, Akhlaghi H, Pedramrad T (2019) Dispersive solid phase microextraction. TrAC-Trends Anal Chem 118:793–809

    Article  CAS  Google Scholar 

  19. Moliner-Martínez Y, Prima-Garcia H, Ribera A, Coronado E, Campíns-Falcó P (2012) Magnetic in-tube solid phase microextraction. Anal Chem 84:7233–7240

    Article  PubMed  CAS  Google Scholar 

  20. Heidari N, Ghiasvand A (2020) A review on magnetic field-assisted solid-phase microextraction techniques. J Liq Chromatogr Relat Technol 43:75–82

    Article  CAS  Google Scholar 

  21. Pereira JAM, Gonçalves J, Porto-Figueira P, Oliveira JA, Alves V, Perestrelo R, Medina S, Câmara JS (2019) Current trends on microextraction by packed sorbent fundamentals, application fields, innovative improvements and future applications. Analyst 144:5048–5074

    Article  CAS  PubMed  Google Scholar 

  22. Es’haghia Z, Ahmadi Golsefidi M, Saify A, Tanha AA, Rezaeifar Z, Alian-Nezhadi Z (2010) Carbon nanotube reinforced hollow fiber solid/liquid phase microextraction: a novel extraction technique for the measurement of caffeic acid in Echinacea purpurea herbal extracts combined with high-performance liquid chromatography. J Chromatogr A 1217:2768–2775

    Article  CAS  Google Scholar 

  23. Yazdi MN, Yamini Y, Asiabi H (2018) Fabrication of polypyrrole-silver nanocomposite for hollow fiber solid phase microextraction followed by HPLC/UV analysis for determination of parabens in water and beverages samples. J Food Compos Anal 74:18–26

    Article  CAS  Google Scholar 

  24. Yan X, Zhan Y, Zhong D, Li Y, Wu D (2018) Electrospun nanofiber cloud for ultrafast solid phase micro-extraction of trace organics in water samples. J Chromatogr A 1574:42–49

    Article  CAS  PubMed  Google Scholar 

  25. Wang L, Li Q, Zhang L (2017) A convenient approach for the determination multiple trace BPS by using in-syringe-assisted solid phase microextraction system packed with elastic spongy graphene rod coupled with HPLC. Anal Methods 9:2673–2681

    Article  CAS  Google Scholar 

  26. Li S, Zhu F, Jiang R, Ouyang G (2016) Preparation and evaluation of amino modified graphene solid phase microextraction fiber and its application to the determination of synthetic musks in water samples. J Chromatogr A 1429:1–7

    Article  CAS  PubMed  Google Scholar 

  27. Jin T, Cheng J, Cai C, Cheng M, Wu S, Zhou H (2016) Graphene oxide-based sol-gel stainless steel fiber for the headspace solid-phase microextraction of organophosphate ester flame retardants in water samples. J Chromatogr A 1457:1–6

    Article  CAS  PubMed  Google Scholar 

  28. Naing NN, Li SFY, Lee HK (2016) Evaluation of graphene-based sorbent in the determination of polar environmental contaminants in water by micro-solid phase extraction-high performance liquid chromatography. J Chromatogr A 1427:29–36

    Article  CAS  PubMed  Google Scholar 

  29. Wang X, Lu M, Wang H, Huang P, Ma X, Cao C, Du X (2016) Three-dimensional graphene aerogel-mesoporous carbon composites as novel coatings for solid-phase microextraction for the efficient enrichment of brominated flame retardants. New J Chem 40:6308–6314

    Article  CAS  Google Scholar 

  30. Amanzadeh H, Yamini Y, Morteza M, Asi YA (2016) Determination of phthalate esters in drinking water and edible vegetable oil samples by head space solid phase microextraction using graphene/polyvinylchloride nanocomposite coated fiber coupled to gas chromatography-flame ionization detector. J Chromatogr A 1465:38–46

    Article  CAS  PubMed  Google Scholar 

  31. Chatzimitakos T, Samanidou V, Stalikas CD (2017) Graphene-functionalized melamine sponges for the microextraction of sulfonamides from food and environmental samples. J Chromatogr A 1522:1–8

    Article  CAS  PubMed  Google Scholar 

  32. Liu S, Pan G, Yang H, Cai Z, Zhu F, Ouyang G (2019) Determination and elimination of hazardous pollutants by exploitation of a Prussian blue nanoparticles-graphene oxide composite. Anal Chim Acta 1054:17–25

    Article  CAS  PubMed  Google Scholar 

  33. Deng J, Zhang P, Jin T, Zhou H, Chen J (2017) Graphene oxide/β-cyclodextrin composite as fiber coating for high efficiency headspace solid phase microextraction of organophosphate ester flame retardants in environmental water. RSC Adv 7:54475–54484

    Article  CAS  Google Scholar 

  34. Tashakkori P, Erdem P, Merdivan M, Bozkurt SS (2019) Determination of phthalate esters in water and coffee by solid-phase microextraction using vinyl terminated imidazolium based ionic liquid grafted on graphene oxide coatings. ChemistrySelect 4:2307–2313

    Article  CAS  Google Scholar 

  35. Chullasat K, Nurerk P, Kanatharana P, Kueseng P, Sukchuay T, Bunkoed O (2017) Hybrid monolith sorbent of polypyrrole-coated graphene incorporated into a polyvinyl alcohol cryogel for extraction and enrichment of sulfonamides from water samples. Anal Chim Acta 961:59–66

    Article  CAS  PubMed  Google Scholar 

  36. Vieira AC, Santos MG, Figueiredo EC (2017) Solid-phase extraction of triazole fungicides from water samples using disks impregnated with carbon nanotubes followed by GC-MS analysis. Int J Environ Anal Chem 97:29–41

    Article  CAS  Google Scholar 

  37. Vosough M, Hassanbeigi SA (2018) Determination of ultraviolet compounds in environmental water samples using membrane-protected micro-solid-phase extraction. J Sep Sci 41:2401–2410

    Article  CAS  PubMed  Google Scholar 

  38. Song XL, Chen Y, Yuan JP, Qin YJ, Zhao RS, Wang X (2016) Carbon nanotube composite microspheres as a highly efficient solid-phase microextraction coating for sensitive determination of phthalate acid esters in water samples. J Chromatogr A 1468:17–22

    Article  CAS  PubMed  Google Scholar 

  39. Hu X, Wang C, Luo R, Liu C, Qi J, Shen J, Han W, Wang L, Li J (2019) Double-shelled hollow ZnO/carbon nanotubes as an efficient solid-phase microextraction coating for broad-spectrum pollutants enrichment. Nanoscale 11:2805–2811

    Article  CAS  PubMed  Google Scholar 

  40. Naeemullah TM (2019) Development of tetraethylene pentamine functionalized multi-walled carbon nanotubes as a new adsorbent in a syringe system for removal of bisphenol A by using multivariate optimization techniques. Microchem J 147:1147–1154

    Article  CAS  Google Scholar 

  41. Chen H, Wang F, Bian Y, Ji R, Song Y, Jiang X (2019) Co- and self-activated synthesis of tailored multimodal porous carbons for solid-phase microextraction of chlorobenzenes and polychlorinated biphenyls. J Chromatogr A 1585:1–9

    Article  CAS  Google Scholar 

  42. Yu H, Zhao Y, Yang L, Chen X (2017) Bread-derived carbon foam as an adsorbent for the solid-phase microextraction of polybrominated diphenyl ethers. Anal Methods 9:6808–6813

    Article  CAS  Google Scholar 

  43. Lirio S, Fu CW, Lin JY, Hsu MJ, Huang HY (2016) Solid-phase microextraction of phthalate esters in water sample using different activated carbon monoliths as adsorbents. Anal Chim Acta 927:55–63

    Article  CAS  PubMed  Google Scholar 

  44. Mashile GP, Mpupa A, Nomngongo PN (2018) In-syringe micro solid-phase extraction method for the separation and preconcentration of parabens in environmental water samples. Molecules 23:1450

    Article  PubMed Central  CAS  Google Scholar 

  45. Wang X, Feng J, Tian Y, Li C, Ji X, Luo C, Sun M (2019) Melamine-formaldehyde aerogel functionalized with polydopamine as in-tube solid-phase microextraction coating for the determination of phthalate esters. Talanta 199:317–323

    Article  CAS  PubMed  Google Scholar 

  46. Feng J, Wang X, Han S, Ji X, Li C, Luo C, Sun M (2019) An ionic-liquid-modified melamine-formaldehyde aerogel for in-tube solid-phase microextraction of estrogens followed by high performance liquid chromatography with diode array detection. Microchim Acta 186:769

    Article  CAS  Google Scholar 

  47. Li G, Deng R, Peng G, Yang C, He Q, Lu Y, Shi H (2018) Magnetic solid-phase extraction for the analysis of bisphenol A, naproxen and triclosan in wastewater samples. Water Sci Technol 77:2220–2227

    Article  CAS  PubMed  Google Scholar 

  48. Chen XH, Pan SD, Ye MJ, Li XP, Zhao YG, Jin MC (2016) Magnetic solid-phase extraction based on a triethylenetetramine-functionalized magnetic graphene oxide composite for the detection of ten trace phenolic environmental estrogens in environmental water. J Sep Sci 39:762–768

    Article  CAS  PubMed  Google Scholar 

  49. Li W, Zhang J, Zhu W, Qin P, Zhou Q, Lu M, Zhang X, Zhao W, Zhang S, Cai Z (2020) Facile preparation of reduced graphene oxide/ZnFe2O4 nanocomposite as magnetic sorbents for enrichment of estrogens. Talanta 208:120440

    Article  CAS  PubMed  Google Scholar 

  50. Avan AA, Filik H (2018) CoFe2O4-MWCNTs modified screen printed carbon electrode coupled with magnetic CoFe2O4-MWCNTs based solid phase microextraction for the detection of bisphenol A. Curr Nanosci 14:199–208

    Article  CAS  Google Scholar 

  51. Wu J, Wang C, Liang X, Yang X, Wang C, Wu Q, Wang Z (2017) Magnetic spherical carbon as an efficient adsorbent for the magnetic extraction of phthalate esters from lake water and milk samples. J Sep Sci 40:2207–2213

    Article  CAS  PubMed  Google Scholar 

  52. Mei M, Pang J, Huang X (2018) Development of a sensitive method for the determination of parabens in complex samples by online coupling of magnetism-enhanced monolith-based in-tube solid phase microextraction with high performance liquid chromatography. Anal Methods 10:1977–1985

    Article  CAS  Google Scholar 

  53. Mei M, Huang X (2017) Online analysis of five organic ultraviolet filters in environmental water samples using magnetism-enhanced monolith-based in-tube solid phase microextraction coupled with high-performance liquid chromatography. J Chromatogr A 1525:1–9

    Article  CAS  PubMed  Google Scholar 

  54. An X, Chai W, Deng X, Chen H, Ding G (2018) A bioinspired polydopamine approach toward the preparation of gold-modified magnetic nanoparticles for the magnetic solid-phase extraction of steroids in multiple samples. J Sep Sci 41:2774–2782

    Article  CAS  PubMed  Google Scholar 

  55. Ma R, Hao L, Wang J, Wang C, Wu Q, Wang Z (2016) Magnetic porous carbon derived from a metal-organic framework as a magnetic solid-phase extraction adsorbent for the extraction of sex hormones from water and human urine. J Sep Sci 39:3571–3577

    Article  CAS  PubMed  Google Scholar 

  56. Eshaghi Z, Nezhadali A, Khatibi AD (2016) Magnetically responsive polycaprolactone nanoparticles for progesterone screening in biological and environmental samples using gas chromatography. Anal Bioanal Chem 408:5537–5549

    Article  CAS  Google Scholar 

  57. Ma K, Zhang M, Miao S, Gu X, Li N, Cui S, Yang J (2018) Magnetic solid-phase extraction of pyrethroid pesticides in environmental water samples with CoFe2O4-embedded porous graphitic carbon nanoparticles. J Sep Sci 41:3441–3448

    Article  CAS  PubMed  Google Scholar 

  58. Li JY, Long XY, Yin HX, Qiao JQ, Lian HZ (2016) Magnetic solid-phase extraction based on a polydopamine-coated Fe3O4 nanoparticles absorbent for the determination of bisphenol A, tetrabromobisphenol A, 2,4,6-tribtomophenol, and (S)-1,1′-bi2-naphthol in environmental waters by HPLC. J Sep Sci 39:2562–2572

    Article  CAS  PubMed  Google Scholar 

  59. Wu Y, Zhou Q, Yuan Y, Wang H, Tong Y, Zhan Y, Sheng X, Sun Y, Zhou X (2020) Enrichment and sensitive determination of phthalate esters in environmental water samples: a novel approach of MSPE-HPLC based on PAMAM dendrimers-functionalized magnetic nanoparticles. Talanta 206:120213

    Article  CAS  PubMed  Google Scholar 

  60. Wang Y, Tong Y, Xu X, Zhang L (2019) Developed magnetic multiparous 3D N-Co@C/HCF as efficient sorbent for the extraction of five trace phthalate esters. Anal Chim Acta 1054:176–183

    Article  CAS  PubMed  Google Scholar 

  61. Gonzalez-Salamo J, Socas-Rodriguez B, Hernandez-Borges J, Rodriguez-Delgado MA (2017) Determination of phthalic acid esters in water samples using core-shell poly (dopamine) magnetic nanoparticles and gas chromatography tandem mass spectrometry. J Chromatogr A 1530:35–44

    Article  CAS  PubMed  Google Scholar 

  62. Zhou Q, Zheng Z, Xiao J, Fan H, Yan X (2016) Determination of phthalate esters at trace level from environmental water samples by magnetic solid-phase extraction with Fe@SiO2@polyethyleneimine magnetic nanoparticles as adsorbent prior to high-performance liquid chromatography. Anal Bioanal Chem 408:5211–5220

    Article  CAS  PubMed  Google Scholar 

  63. Yamani Y, Safari M, Morsali A, Safarifard V (2018) Magnetic framework composite as an efficient sorbent for magnetic solid-phase extraction of plasticizer compounds. J Chromatogr A 1570:38–46

    Article  CAS  Google Scholar 

  64. Marsin FM, Ibrahim WAW, Keyon ASA, Sanagi MM (2018) Box-Behnken experimental design for the synthesis of magnetite-polypyrrole composite for the magnetic solid phase extraction of non-steroidal anti-inflammatory drug residues. Anal Lett 51:2221–2239

    Article  CAS  Google Scholar 

  65. Gong SX, Wang XL, Liu W, Wang ML, Wang X, Wang ZW, Zhao RS (2017) Aminosilanized magnetic carbon microspheres for the magnetic solid-phase extraction of bisphenol A, bisphenol AF, and tetrabromobisphenol A from environmental water samples. J Sep Sci 40:1755–1764

    Article  CAS  PubMed  Google Scholar 

  66. Esfandiarnejad R, Sereshti H (2019) Designing an absolutely solvent-free binary extraction system as a green strategy for ultra-trace analysis of chlorophenols. Microchem J 146:701–707

    Article  CAS  Google Scholar 

  67. Mahpishanian S, Sereshti H, Ahmadvand M (2017) A nanocomposite consisting of silica-coated magnetite and phenyl-functionalized graphene oxide for extraction of polycyclic aromatic hydrocarbon from aqueous matrices. J Environ Sci 55:164–173

    Article  Google Scholar 

  68. Liu L, Meng WK, Zhou YS, Wang X, Xu GJ, Wang ML, Lin JM, Zhao RS (2019) β-Ketoenamine-linked covalent organic framework coating for ultra-high high performance solid-phase microextraction of polybrominated diphenyl ethers from environmental samples. Chem Eng J 356:926–933

    Article  CAS  Google Scholar 

  69. Li W, Huang L, Guo D, Zhao Y, Zhu Y (2018) Self-assembling covalent organic framework functionalized poly(styrene-divinyl benzene-glycidylmethacrylate) composite for the rapid extraction of non-steroidal anti-inflammatory drugs in wastewater. J Chromatogr A 1571:76–83

    Article  CAS  PubMed  Google Scholar 

  70. Guo H, Song N, Wang D, Ma J, Jia Q (2019) A modulation approach for covalent organic frameworks: application to solid phase microextraction of phthalate esters. Talanta 198:277–283

    Article  CAS  PubMed  Google Scholar 

  71. Rocio-Bautista P, Pino V, Ayala JH, Ruiz-Perez C, Vallcorba O, Afonso AM, Pasan J (2018) A green metal-organic framework to monitor water contaminants. RSC Adv 8:31304–31310

    Article  CAS  Google Scholar 

  72. Wang G, Lei Y, Song H (2015) Exploration of metal-organic framework MOF-177 coated fibers for headspace solid-phase microextraction MOF-177 coated fibers for headspace solid-phase microextraction of polychlorinated biphenyls and polycyclic aromatic hydrocarbons. Talanta 144:369–374

    Article  CAS  PubMed  Google Scholar 

  73. Gao G, Xing Y, Liu T, Wang J, Hou X (2019) UiO-66(Zr) as sorbent for porous membrane protected micro-solid-phase extraction androgens and progestogens in environmental water samples coupled with LC-MS/MS analysis: the application of experimental and molecular simulation method. Microchem J 146:126–133

    Article  CAS  Google Scholar 

  74. Tan SC, Lee HK (2019) A metal-organic framework of type MIL-101(Cr) for emulsification-assisted micro-solid-phase extraction prior to UHPLC-MS/MS analysis of polar estrogens. Microchim Acta 186:165 (1-9)

    Article  CAS  Google Scholar 

  75. Tahmasebi E, Masoomi MY, Yamini Y, Morsali A (2016) Application of a Zn(II) based metal-organic framework as an efficient solid-phase extraction sorbent for preconcentration of plasticizer compounds. RSC Adv 6:40211–40218

    Article  CAS  Google Scholar 

  76. Chen Z, Yu C, Xi J, Tang S, Bao T, Zhang J (2019) A hybrid material prepared by controlled growth of a covalent organic framework on amino-modified MIL-68 for pipette tip solid-phase extraction of sulfonamides prior to their determination by HPLC. Microchim Acta 186:393

    Article  CAS  Google Scholar 

  77. Shnayder BA, Levchyk VM, Zui MF, Kobylinska NG (2019) Hybrid organosilica coatings for solid phase microextraction: highly efficient adsorbents for determination of trace parabens. Nanoscale Nanostruc Mater Coat 55:380–390

    Google Scholar 

  78. Mondal S, Jiang J, Li Y, Ouyang G (2019) Carbon and tin-based polyacrylonitrile hybrid architecture solid phase microextraction fiber for the detection and quantification of antibiotic compounds in aqueous environmental systems. Molecules 24:1670

    Article  CAS  PubMed Central  Google Scholar 

  79. Zakerian R, Bahar S (2017) Electrochemical preparation of zinc oxide/polypyrrole nanocomposite coating for the highly effective solid-phase microextraction of phthalate esters. J Sep Sci 40:4439–4445

    Article  CAS  PubMed  Google Scholar 

  80. Liu Y, Liu Y, Liu Z, Du F, Qin G, Li G, Hu X, Xu Z, Cai Z (2019) Supramolecularly imprinted polymeric solid phase microextraction coatings for synergetic recognition nitrophenols and bisphenol A. J Hazard Mater 368:358–364

    Article  CAS  PubMed  Google Scholar 

  81. Demirkurt M, Olcer YA, Demir MM, Eroglu AE (2018) Electrospun polystyrene fibers knitted around imprinted acrylate microspheres as sorbent for paraben derivatives. Anal Chim Acta 1014:1–9

    Article  CAS  PubMed  Google Scholar 

  82. Rozaini MNH, Semail NF, Saad B, Kamaruzaman S, Abdullah WN, Rahim NA, Miskam M, Loh SH, Yahaya N (2019) Molecularly imprinted silica gel incorporated with agarose polymer matrix as mixed matrix membrane for separation and preconcentration of sulfonamide antibiotics in water samples. Talanta 199:522–531

    Article  CAS  PubMed  Google Scholar 

  83. Wang C, Cheng L, Zhang L, Zuo Y (2019) Graphene oxide based molecularly imprinted polymers modified with β-cyclodextrin for selective extraction of di(2-ethylhexyl) phthalate in environmental waters. J Sep Sci 42:1248–1256

    Article  CAS  PubMed  Google Scholar 

  84. Eskandarpour N, Sereshti H (2018) Electrospun polycaprolactam-manganese oxide fiber for headspace-solid phase microextraction of phthalate esters in water samples. Chemosphere 191:36–43

    Article  CAS  PubMed  Google Scholar 

  85. Eskandarpour N, Sereshti H, Najarzadekan H, Gaikani H (2016) Polyurethane / polystyrene-silica electrospun nanofibrous composite for the headspace solid-phase microextraction of chlorophenols coupled with gas chromatography. J Sep Sci 39:4637–4644

    Article  CAS  PubMed  Google Scholar 

  86. Mehrani Z, Ebrahimzadeh H, Moradi E (2019) Poly m-aminophenol/nylon 6/graphene oxide electrospun nanofiber as an efficient sorbent for thin film microextraction of phthalate esters in water and milk solutions preserved in baby bottle. J Chromatogr A 1600:87–94

    Article  CAS  PubMed  Google Scholar 

  87. Ji X, Sun M, Li C, Han S, Wang X, Tian Y, Feng J (2019) Bare polyprolylene hollow fiber as extractive phase for in-tube solid-phase microextraction to determine estrogens in water samples. J Sep Sci 42:2398–2406

    Article  CAS  PubMed  Google Scholar 

  88. Feng J, Sun M, Han S, Ji X, Li C, Wang X, Tian Y (2019) Polydopamine-coated cotton fibers as the adsorbent for in-tube solid-phase microextraction. J Sep Sci 42:2163–2170

    Article  CAS  PubMed  Google Scholar 

  89. Bu Y, Feng J, Wang X, Tian Y, Sun M, Luo C (2017) In situ hydrothermal growth of polyaniline coating for in-tube solid-phase microextraction towards ultraviolet filters in environmental water samples. J Chromatogr A 1483:48–55

    Article  CAS  PubMed  Google Scholar 

  90. Wang X, Feng J, Feng J, Tian Y, Luo C, Sun M (2018) Basalt fibers coated with nano-calcium carbonate for in-tube solid-phase microextraction and online analysis of estrogens coupled with high-performance liquid chromatography. Anal Methods 10:2234–2241

    Article  CAS  Google Scholar 

  91. Bu Y, Feng J, Tian Y, Wang X, Sun M, Luo C (2017) An organically modified silica aerogel for online in-tube solid phase microextraction. J Chromatogr A 1517:203–208

    Article  CAS  PubMed  Google Scholar 

  92. Saraji M, Jafari MT, Mossaddegh M (2016) Hallosite nanotubes-titanium dioxide as a solid phase microextraction coating combined with negative corona discharge-ion mobility spectrometry for the determination of parathion. Anal Chim Acta 926:55–62

    Article  CAS  PubMed  Google Scholar 

  93. De Toffoli AL, Fumes BH, Lanças FM (2018) Packed in-tube solid phase microextraction with graphene oxide supported on aminopropyl silica: determination of target triazines in water samples. J Environ Sci Heal B 53:434–440

    Article  CAS  Google Scholar 

  94. Wang Z, Jin P, Zhou S, Wang X, Du X (2018) Controlled growth of porous hydroxyapatite nanoparticles coating on a titanium fiber for rapid and efficient solid-phase microextraction of polar chlorophenols, triclosan and bisphenol A from environmental water. Anal Methods 10:3237–3247

    Article  CAS  Google Scholar 

  95. Li L, Guo R, Li Y, Guo M, Wang X, Du X (2015) In situ growth and phenyl functionalization of titania nanoparticles coating for solid-phase microextraction of ultraviolet filters in environmental water samples followed by high performance liquid chromatography-UV detection. Anal Chim Acta 867:38–46

    Article  CAS  PubMed  Google Scholar 

  96. Wang H, Du J, Zhen Q, Zang R, Wang X, Du X (2019) Selective solid-phase microextraction of ultraviolet filters in environmental water with oriented ZnO nanosheets coated nickel-titanium alloy fibers followed by high performance liquid chromatography with UV detection. Talanta 191:193–201

    Article  CAS  PubMed  Google Scholar 

  97. Yang Y, Lei Y, Zhang R, Wang X, Du X (2018) Electrochemical fabrication of two-dimensional copper oxide nanosheets on stainless as a fiber coating for highly sensitive solid-phase microextraction of ultraviolet filters. Anal Methods 10:4044–4052

    Article  CAS  Google Scholar 

  98. Wang H, Song W, Zhang M, Zhen Q, Guo M, Zhang Y, Du X (2016) Hydrothermally grown and self-assembled modified titanium and nickel oxide composite nanosheets on nitinol-based fibers for efficient solid phase microextraction. J Chromatogr A 1468:33–41

    Article  CAS  PubMed  Google Scholar 

  99. Ma M, Wang H, Zhen Q, Zhang M, Du X (2017) Development of nitrogen-enriched carbonaceous material coated titania nanotubes array as a fiber coating for solid-phase microextraction of ultraviolet filters in environmental water. Talanta 167:118–125

    Article  CAS  PubMed  Google Scholar 

  100. Kirschner N, Dias AN, Budziak D, da Silveria CB, Merib J, Carasek E (2017) Novel approach to high-throughput determination of endocrine disruptors using recycled diatomaceous earth as a green sorbent phase for thin-film solid-phase microextraction combined with 96-well plate system. Anal Chim Acta 996:29–37

    Article  CAS  PubMed  Google Scholar 

  101. Wang X, Wang H, Huang P, Ma X, Lu X, Du X (2017) Preparation of three-dimensional mesoporous polymer in situ polymerization solid phase microextraction fiber and its application to the determination of seven chlorophenols. J Chromatogr A 1479:40–47

    Article  CAS  PubMed  Google Scholar 

  102. Pei M, Zhang Z, Huang X, Wu Y (2017) Fabrication of a polymeric ionic liquid-based adsorbent for multiple monolithic fiber solid-phase microextraction of endocrine disrupting chemicals in complicated samples. Talanta 165:152–160

    Article  CAS  PubMed  Google Scholar 

  103. Li QL, Li Q, Guo SF, Li D, Wo R, Zhao RS, Jiang W (2019) Composite material that comprised metal-organic nanotubes and a sponge as a high-performance adsorbent for the extraction of pharmaceuticals and personal care products from environmental water samples. Chem Asian J 14:1487–1495

    Article  CAS  PubMed  Google Scholar 

  104. Amiri A, Chahkandi M, Targhoo A (2017) Synthesis of nano-hydroxyapatite sorbent for microextraction in packed syringe of phthalate esters in water samples. Anal Chim Acta 950:64–70

    Article  CAS  PubMed  Google Scholar 

  105. Wang FQ, Li J, Wu JF, Zhao GC (2018) Layered double hydroxides as a coating for the determination of phthalate esters in aqueous solution with solid-phase microextraction followed by gas chromatography. Chromatographia 81:799–807

    Article  CAS  Google Scholar 

  106. Eskandarpour N, Sereshti H (2019) Electrospun polyurethane fibers doped with manganese oxide nanoparticles as an effective adsorbent for determination of priority pollutant mono-nitrophenols in water samples. J Environ Chem Eng 7:102926 (1-7)

    Article  CAS  Google Scholar 

  107. Shi S, Xu C, Yang C, Li J, Du H, Li B, Kang F (2013) Flexible supercapacitors. Particuology 11:371–377

    Article  Google Scholar 

  108. Nouri N, Khorram P, Sereshti H (2019) Applications of three-dimensional graphenes for preconcentration, extraction, and sorption of chemical species: a review. Microchim Acta 186:232

    Article  CAS  Google Scholar 

  109. Bhuyan MSA, Uddin MN, Islam MM, Bipasha FA, Hossain SS (2016) Synthesis of graphene. Int Nano Lett 6:65–83

    Article  CAS  Google Scholar 

  110. Prasek J, Drbohlavova J, Chomoucka J, Hubalek J, Jasek O, Adam V, Kizek R (2011) Methods for carbon nanotubes synthesis—review. J Mater Chem 21:15872–15884

    Article  CAS  Google Scholar 

  111. Chang B, Wang Y, Pei K, Yang S, Dong X (2014) ZnCl2-activated porous carbon spheres with high surface area and superior mesoporous structure as an efficient supercapacitor electrode. RSC Adv 4:40546–40552

    Article  CAS  Google Scholar 

  112. Wang H, Maiyalagan T, Wang X (2012) Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal 2:781–794

    Article  CAS  Google Scholar 

  113. Saucier C, Adebayo MA, Lima EC, Cataluna R, Thue PS, Prola LDT, Puchana-Rosero MJ, Machado FM, Pavan FA, Dotto GL (2015) Microwave-assisted activated carbon from cocoa shell as adsorbent for removal of sodium diclofenac and nimesulide from aqueous effluents. J Hazard Mater 289:18–27

    Article  CAS  PubMed  Google Scholar 

  114. Xiao R, Wang S, Ibrahim MH, Abdu HI, Shan D, Chen J, Lu X (2019) Three-dimensional hierarchical frameworks based on molybdenum disulfide-graphene oxide-supported magnetic nanoparticles for enrichment fluoroquinolone antibiotics in water. J Chromatogr A 1593:1–8

    Article  CAS  PubMed  Google Scholar 

  115. Duman O, Tunc S, Polat TG, Bozoglan BK (2016) Synthesis of magnetic oxidized multiwalled carbon nanotube-κ-carrageenan-Fe3O4 nanocomposite adsorbent and its application in cationic Methylene Blue dye adsorption. Carbohydr Polym 147:79–88

    Article  CAS  PubMed  Google Scholar 

  116. Feng X, Ding X, Jiang D (2012) Covalent organic frameworks. Chem Soc Rev 41:6010–6022

    Article  CAS  PubMed  Google Scholar 

  117. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) The chemistry and applications of metal-organic frameworks. Science 341:1230444

    Article  PubMed  CAS  Google Scholar 

  118. Zhou HC, Long JR, Yaghi OM (2012) Introduction to metal-organic frameworks. Chem Rev 112:673–674

    Article  CAS  PubMed  Google Scholar 

  119. Hou X, Wang L, Guo Y (2017) Recent developments in solid-phase microextraction coatings for environmental and biological analysis. Chem Lett 46:1444–1455

    Article  CAS  Google Scholar 

  120. Ng NT, Kamaruddin AF, Ibrahim WAW, Sanagi MM, Keyon ASA (2018) Advances in organic-inorganic hybrid sorbents for the extraction of organic and inorganic pollutants in different types of food and environmental samples. J Sep Sci 41:195–208

    Article  CAS  PubMed  Google Scholar 

  121. Turiel E, Martin-Esteban (2010) Molecularly imprinted polymers for sample preparation: a review. Anal Chim Acta 668:87–99

  122. Beltran A, Borrull F, Cormack PAG, Marce RM (2010) Molecularly-imprinted polymers: useful sorbents for selective extractions. TrAC-Trends Anal Chem 29:1363–1375

    Article  CAS  Google Scholar 

  123. Chu L, Zheng S, Qu B, Geng S, Kang X (2017) Detection of β-agonists in pork tissue with novel electrospun nanofibers-based solid-phase extraction followed ultra-high performance liquid chromatography/tandem mass spectrometry. Food Chem 227:315–321

    Article  CAS  PubMed  Google Scholar 

  124. Huang J, Deng H, Song D, Xu H (2015) Electrospun polystyrene/graphene nanofiber film as a novel adsorbent of thin film microextraction for extraction of aldehydes in human exhaled breath condensates. Anal Chim Acta 878:102–108

    Article  CAS  PubMed  Google Scholar 

  125. Chen R, Yang Y, Wang N, Hao L, Li L, Guo X, Zhang J, Hu Y, Shen W (2015) Application of packed porous nanofibers—solid phase extraction for the detection of sulfonamide residues from environmental water samples by ultra high performance liquid chromatography with mass spectrometry. J Sep Sci 38:749–756

    Article  CAS  PubMed  Google Scholar 

  126. Nema T, Chan ECY, Ho PC (2010) Application of silica-based monolith as solid phase extraction cartridge for extracting polar compounds from urine. Talanta 82:488–494

    Article  CAS  PubMed  Google Scholar 

  127. Azzouz A, Kailasa SK, Lee SS, Rascón AJ, Ballesteros E, Zhang M, Kim KH (2018) Review of nanomaterials as sorbents in solid-phase extraction for environmental samples. TrAC-Trends Anal Chem 108:347–369

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hassan Sereshti or Osman Duman.

Ethics declarations

Conflict of interest

The authors declare that they have no competing of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sereshti, H., Duman, O., Tunç, S. et al. Nanosorbent-based solid phase microextraction techniques for the monitoring of emerging organic contaminants in water and wastewater samples. Microchim Acta 187, 541 (2020). https://doi.org/10.1007/s00604-020-04527-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04527-w

Keywords

Navigation