Skip to main content

Application of Solid Phase Microextraction in Aqueous Sampling

  • Chapter
  • First Online:
Solid Phase Microextraction

Abstract

Various pollutants have been emitted due to the development of industry, which can cause serious problems for the production of drinking water and threaten the health of human. Aquatic monitoring has attracted more and more attention and needs to be developed urgently for the analysis of trace pollutants from complex matrix. Solid-phase microextraction (SPME), as a solventless extraction technique, is applicable for both off-site and on-site sampling. Here, two general strategies for on-site SPME sampling, including active and passive sampling, are introduced in detail. The main formats for active sampling include fiber, thin film, and stir bar, while the reported formats for passive sampling are fiber, polydimethylsiloxane (PDMS) rod, PDMS membrane, and PDMS tubing. To obtain better determination effects of emerging contaminants, new adsorptive materials have been employed gradually instead of commercial adsorbents to achieve the targets of high enrichment efficiencies and short analysis time. All in all, the SPME samplers have been diversified and developed over the past decade to obtain more information about the pollution status of water environment all over the world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. George MJ, Marjanovic L, Williams DBG (2015) Solvent-assisted headspace sampling using solid phase microextraction for the analysis of phenols in water. Anal Chem 87:9559–9562. doi:10.1021/acs.analchem.5b02539

    Article  CAS  Google Scholar 

  2. Stevens ME Jr, Tipple CA, Smith PA et al (2013) Application of a high surface area solid-phase microextraction air sampling device: collection and analysis of chemical warfare agent surrogate and degradation compounds. Anal Chem 85:8626–8633. doi:10.1021/ac401033a

    Article  CAS  Google Scholar 

  3. Bianchi F, Bedini A, Riboni N et al (2014) Cavitand-based solid-phase microextraction coating for the selective detection of nitroaromatic explosives in air and soil. Anal Chem 86:10646–10652. doi:10.1021/ac5025045

    Article  CAS  Google Scholar 

  4. Risticevic S, Souza-Silva EA, DeEll JR et al (2016) Capturing plant metabolome with direct-immersion in vivo solid phase microextraction of plant tissues. Anal Chem 88:1266–1274. doi:10.1021/acs.analchem.5b03684

    Article  CAS  Google Scholar 

  5. Zhou SN, Oakes KD, Servos MR et al (2008) Application of solid-phase microextraction for in vivo laboratory and field sampling of pharmaceuticals in fish. Environ Sci Technol 42:6073–6079. doi:10.1021/es8001162

    Article  CAS  Google Scholar 

  6. Voice TC, Kolb B (1994) Comparison of European and American techniques for the analysis of volatile organic compounds in environmental matrices. J Chromatogr Sci 32:306–311. doi:10.1093/chromsci/32.8.306

    Article  CAS  Google Scholar 

  7. Voice TC, Kolb B (1993) Static and dynamic headspace analysis of volatile organic compounds in soils. Environ Sci Technol 27:709–713. doi:10.1021/es00041a014

    Article  CAS  Google Scholar 

  8. Richardson SD, Kimura SY (2016) Water analysis: emerging contaminants and current issues. Anal Chem 88:546–582. doi:10.1021/acs.analchem.5b04493

    Article  Google Scholar 

  9. Qin Z, Bragg L, Ouyang G et al (2009) Solid-Phase microextraction under controlled agitation conditions for rapid on-site sampling of organic pollutants in water. J Chromatogr A 1216:6979–6985. doi:10.1016/j.chroma.2009.08.052

    Article  CAS  Google Scholar 

  10. Huang S, He S, Xu H et al (2015) Monitoring of persistent organic pollutants in seawater of the pearl river estuary with rapid on-site active SPME sampling technique. Environ Pollut 200:149–158. doi:10.1016/j.envpol.2015.02.016

    Article  CAS  Google Scholar 

  11. Basheer C, Balaji G, Chua SH et al (2011) Novel on-site sample preparation approach with a portable agitator using functional polymer-coated multi-fibers for the microextraction of organophosphorus pesticides in seawater. J Chromatogr A 1218:654–661. doi:10.1016/j.chroma.2010.12.033

    Article  CAS  Google Scholar 

  12. Kermani FR, Pawliszyn J (2012) Sorbent coated glass wool fabric as a thin film microextraction device. Anal Chem 84:8990–8995. doi:10.1021/ac301861z

    Google Scholar 

  13. Deng Z, Chen X, Wang Y et al (2015) Headspace thin-film microextraction coupled with surface-enhanced raman scattering as a facile method for reproducible and specific detection of sulfur dioxide in wine. Anal Chem 87:633–640. doi:10.1021/ac503341g

    Article  CAS  Google Scholar 

  14. Bragg L, Qin Z, Pawliszyn J (2006) Field sampling with a polydimethylsiloxane thin-film. J Chromatogr Sci 44:317–323. doi:10.1093/chromsci/44.6.317

    Article  CAS  Google Scholar 

  15. Ouyang G, Zhao W, Bragg L et al (2007) Time-weighted average water sampling in lake Ontario with solid-phase microextraction passive samplers. Environ Sci Technol 11:4026–4031. doi:10.1021/es062647a

    Article  Google Scholar 

  16. Jiang R, Pawliszyn J (2014) Preparation of a particle-loaded membrane for trace gas sampling. Anal Chem 86:403–410. doi:10.1021/ac4035339

    Article  CAS  Google Scholar 

  17. Qin Z, Bragg L, Ouyang G et al (2008) Comparison of thin-film microextraction and stir bar sorptive extraction for the analysis of polycyclic aromatic hydrocarbons in aqueous samples with controlled agitation conditions. J Chromatogr A 1196:89–95. doi:10.1016/j.chroma.2008.03.063

    Article  Google Scholar 

  18. Grandy JJ, Boyaci E, Pawliszyn J (2016) Development of a carbon mesh supported thin film microextraction membrane as a means to lower the detection limits of benchtop and portable GC/MS instrumentation. Anal Chem 88:1760–1767. doi:10.1021/acs.analchem.5b04008

    Article  CAS  Google Scholar 

  19. Baltussen E, Sandra P, David F et al (1999) Stir bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples: theory and principles. J Microcolumn Sep 11:737–747. doi:10.1002/(SICI)1520-667X(1999)11:10<737::AID-MCS7>3.0.CO;2-4

  20. Gomez MJ, Herrera S, Sole D et al (2011) Automatic searching and evaluation of priority and emerging contaminants in wastewater and river water by stir bar sorptive extraction followed by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. Anal Chem 83:2638–2647. doi:10.1021/ac102909g

    Article  CAS  Google Scholar 

  21. Soini HA, Bruce KE, Klouckova I et al (2006) In situ surface sampling of biological objects and preconcentration of their volatiles for chromatographic analysis. Anal Chem 78:7161–7168. doi:10.1021/ac0606204

    Article  CAS  Google Scholar 

  22. Benede JL, Chisvert A, Giokas DL et al (2016) Determination of ultraviolet filters in bathing waters by stir bar sorptive-dispersive microextraction coupled to thermal desorption-gas chromatography-mass spectrometry. Talanta 47:246–252. doi:10.1016/j.talanta.2015.09.054

    Article  Google Scholar 

  23. Benet I, Ibanez C, Guardia MD et al (2015) Optimisation of stir-bar sorptive extraction (SBSE), targeting medium and long-chain free fatty acids in cooked ham exudates. Food Chem 185:75–83. doi:10.1016/j.foodchem.2015.03.102

    Article  CAS  Google Scholar 

  24. Zhang W, Zhang Z, Zhang J et al (2014) Covalent immobilization of graphene onto stainless steel wire for jacket-free stir bar sorptive extraction. J Chromatogr A 1351:12–20. doi:10.1016/j.chroma.2014.05.038

    Article  CAS  Google Scholar 

  25. Bratkowska D, Fontanals N, Cormack PA et al (2012) Preparation of a polar monolithic stir bar based on methacrylic acid and divinylbenzene for the sorptive extraction of polar pharmaceuticals from complex water samples. J Chromatogr A 1225:1–7. doi:10.1016/j.chroma.2011.12.064

    Article  CAS  Google Scholar 

  26. Hu C, He M, Chen B et al (2015) Simultaneous determination of polar and apolar compounds in environmental samples by a polyaniline/hydroxyl multi-walled carbon nanotubes composite-coated stir bar sorptive extraction coupled with high performance liquid chromatography. J Chromatogr A 1394:36–45. doi:10.1016/j.chroma.2015.03.046

    Article  CAS  Google Scholar 

  27. Zhou Q, Qian Y, Qian MC (2015) Analysis of volatile phenols in alcoholic beverage by ethylene glycol-polydimethylsiloxane based stir bar sorptive extraction and gas chromatography-mass spectrometry. J Chromatogr A 1390:22–27. doi:10.1016/j.chroma.2015.02.064

    Article  CAS  Google Scholar 

  28. Zhang Z, Zhang W, Bao T et al (2015) Jacket-free stir bar sorptive extraction with bio-inspired polydopamine-functionalized immobilization of cross-linked polymer on stainless steel wire. J Chromatogr A 1407:1–10. doi:10.1016/j.chroma.2015.06.031

    Article  CAS  Google Scholar 

  29. Mao X, Hu B, He M et al (2012) Stir bar sorptive extraction approaches with a home-made portable electric stirrer for the analysis of polycyclic aromatic hydrocarbon compounds in environmental water. J Chromatogr A 1260:16–24. doi:10.1016/j.chroma.2012.08.062

    Article  CAS  Google Scholar 

  30. Xing R, Hu S, Chen X et al (2015) On-site sampling and sample-preparation approach with a portable sampler based on hollow-fiber/graphene bars for the microextraction of nitrobenzene compounds in lake water. J Sep Sci 38:368–373. doi:10.1002/jssc.201401129

    Article  CAS  Google Scholar 

  31. Schwarzenbach RP, Egli T, Hofstetter TB et al (2010) Global water pollution and human health. Annu Rev Environ Resour 35:109–136. doi:10.1146/annurev-environ-100809-125342

    Article  Google Scholar 

  32. Houtman CJ (2010) Emerging contaminants in surface waters and their relevance for the production of drinking water in Europe. J Integr Environ Sci 7:271–295. doi:10.1080/1943815X.2010.511648

    Article  Google Scholar 

  33. Mackay D, Paterson S (1991) Evaluating the multimedia fate of organic chemicals: a level III fugacity model. Environ Sci Technol 25:427–436. doi:10.1021/es00015a008

    Article  CAS  Google Scholar 

  34. Escher BI, Hermens JLM (2004) Peer reviewed: internal exposure: linking bioavailability to effects. Environ Sci Technol 38:455–462. doi:10.1021/es0406740

    Article  Google Scholar 

  35. Cornelissen G, Pettersen A, Broman D et al (2008) Field testing of equilibrium passive samplers to determine freely dissolved native polycyclic aromatic hydrocarbon concentrations. Environ Toxicol Chem 27:499–508. doi:10.1897/07-253.1

    Article  CAS  Google Scholar 

  36. Wang F, Chen Y, Hermens JLM et al (2013) Evaluation of passive samplers with neutral or ion-exchange polymer coatings to determine freely dissolved concentrations of the basic surfactant lauryl diethanolamine: measurements of acid dissociation constant and organic carbon-water sorption coefficient. J Chromatogr A 1315:8–14. doi:10.1016/j.chroma.2013.09.041

    Article  CAS  Google Scholar 

  37. Zhao WN, Ouyang GF, Alaee M et al (2006) On-rod standardization technique for time-weighted average water sampling with a polydimethylsiloxane rod. J Chromatogr A 1124:112–120. doi:10.1016/j.chroma.2006.05.062

    Article  CAS  Google Scholar 

  38. Duan CF, Shen Z, Wu DP et al (2011) Recent developments in solid-phase microextraction for on-site sampling and sample preparation. Trend Anal Chem 30:1568–1574. doi:10.1016/j.trac.2011.08.005

    Article  CAS  Google Scholar 

  39. Fernandez LA, Lao WJ, Maruya KA et al (2012) Passive sampling to measure baseline dissolved persistent organic pollutant concentrations in the water column of the Palos Verdes shelf superfund site. Environ Sci Technol 46:11937–11947. doi:10.1021/es302139y

    Article  CAS  Google Scholar 

  40. Perron MM, Burgess RM, Suuberg EM et al (2013) Performance of passive samplers for monitoring estuarine water column concentrations: 2. Emerging contaminants. Environ Toxicol Chem 32:2190–2196. doi:10.1002/etc.2248

    Article  CAS  Google Scholar 

  41. Perron MM, Burgess RM, Suuberg EM et al (2013) Performance of passive samplers for monitoring estuarine water column concentrations: 1. Contaminants of concern. Environ Toxicol Chem 32:2182–2189. doi:10.1002/etc.2321

    Article  CAS  Google Scholar 

  42. Mäenpää K, Leppänen MT, Figueiredo K et al (2015) Fate of polychlorinated biphenyls in a contaminated lake ecosystem: combining equilibrium passive sampling of sediment and water with total concentration measurements of biota. Environ Toxicol Chem 34:2463–2474. doi:10.1002/etc.3099

    Article  Google Scholar 

  43. Lao WJ, Maruya KA, Tsukada D (2012) A two-component mass balance model for calibration of solid-phase microextraction fibers for pyrethroids in seawater. Anal Chem 84:9362–9369. doi:10.1021/ac302120m

    Article  CAS  Google Scholar 

  44. Hawthorne SB, Grabanski CB, Miller DJ et al (2009) Solid-phase-microextraction measurement of 62 polychlorinated biphenyl congeners in milliliter sediment pore water samples and determination of KDOC values. Anal Chem 81:6936–6943. doi:10.1021/ac901001j

    Article  CAS  Google Scholar 

  45. Vrana B, Popp P, Paschke A et al (2001) Membrane-enclosed sorptive coating. An integrative passive sampler for monitoring organic contaminants in water. Anal Chem 73:5191–5200. doi:10.1021/ac010630z

    Article  CAS  Google Scholar 

  46. Haftka JJH, Scherpenisse P, Jonker MTO et al (2013) Using polyacrylate-coated SPME fibers to quantify sorption of polar and ionic organic contaminants to dissolved organic carbon. Environ Sci Technol 47:4455–4462. doi:10.1021/es400236a

    Article  CAS  Google Scholar 

  47. Alvarez DA, Maruya KA, Dodder NG et al (2014) Occurrence of contaminants of emerging concern along the california coast (2009–2010) using passive sampling devices. Mar Pollut Bull 81:347–354. doi:10.1016/j.marpolbul.2013.04.022

    Article  CAS  Google Scholar 

  48. Burgess RM, Lohmann R, Schubauer-Berigan JP et al (2015) Application of passive sampling for measuring dissolved concentrations of organic contaminants in the water column at three marine superfund sites. Environ Toxicol Chem 34:1720–1733. doi:10.1002/etc.2995

    Article  CAS  Google Scholar 

  49. Zeng E, Tsukada D, Diehl AW (2004) Development of a solid-phase microextraction-based method for sampling of persistent chlorinated hydrocarbons in an urbanized coastal environment. Environ Sci Technol 38:5737–5743. doi:10.1021/es049680m

    Article  CAS  Google Scholar 

  50. Busser FJM, Hermens JLM (2008) Poly(dimethylsiloxane) as passive sampler material for hydrophobic chemicals: effect of chemical properties and sampler characteristics on partitioning and equilibration times. Anal Chem 80:3859–3866. doi:10.1021/ac800258j

    Article  Google Scholar 

  51. Ouyang GF, Chen Y, Pawliszyn J (2005) Time-weighted average water sampling with a solid-phase microextraction device. Anal Chem 77:7319–7325. doi:10.1021/ac051035q

    Article  CAS  Google Scholar 

  52. Ouyang GF, Cui SF, Qin ZP et al (2009) One-calibrant kinetic calibration for on-site water sampling with solid-phase microextraction. Anal Chem 81:5629–5636. doi:10.1021/ac900315w

    Article  CAS  Google Scholar 

  53. Ouyang GF, Zhao WN, Bragg L et al (2007) Time-weighted average water sampling in lake Ontario with solid-phase microextraction passive samplers. Environ Sci Technol 41:4026–4031. doi:10.1021/es062647a

    Article  CAS  Google Scholar 

  54. Oemisch L, Goss KU, Endo S (2013) Determination of oil–water partition coefficients of polar compounds: silicone membrane equilibrator vs. SPME Passive Sampler. Anal Bioanal Chem 405:2567–2574. doi:10.1007/s00216-012-6689-9

    Article  CAS  Google Scholar 

  55. Fernandez LA, Lao WJ, Maruya KA et al (2014) Calculating the diffusive flux of persistent organic pollutants between sediments and the water column on the Palos Verdes shelf superfund site using polymeric passive sampler. Environ Sci Technol 48:3925–3934. doi:10.1021/es404475c

    Article  CAS  Google Scholar 

  56. Chen Y, Koziel JA, Pawliszyn J (2003) Calibration for On-site analysis of hydrocarbons in aqueous and gaseous samples using solid-phase microextraction. Anal Chem 75:6485–6493. doi:10.1021/ac0349328

    Article  CAS  Google Scholar 

  57. Chen Y, Pawliszyn J (2004) Kinetics and the on-site application of standards in a solid-phase microextration fiber. Anal Chem 76:5807–5815. doi:10.1021/ac0495081

    Article  CAS  Google Scholar 

  58. Ouyang G, Cai J, Zhang X et al (2008) Standard-free kinetic calibration for rapid on-site analysis by solid-phase microextraction. J Sep Sci 31:1167–1172. doi:10.1002/jssc.200700495

    Article  CAS  Google Scholar 

  59. Ouyang G, Cui S, Qin Z et al (2009) One-Calibrant kinetic calibration for on-site water sampling with solid-phase microextraction. Anal Chem 81:5629–5636. doi:10.1021/ac900315w

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We acknowledge financial support from the projects of NNSFC (Grants 21225731, 21377172, and 21477166) and the NSF of Guangdong Province (Grant S2013030013474).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gangfeng Ouyang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Huang, S., Zheng, J., Ouyang, G. (2017). Application of Solid Phase Microextraction in Aqueous Sampling. In: Ouyang, G., Jiang, R. (eds) Solid Phase Microextraction. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53598-1_5

Download citation

Publish with us

Policies and ethics