Skip to main content
Log in

Factors influencing the detection limit of the lateral-flow sandwich immunoassay: a case study with potato virus X

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Key factors influencing the analyte detection limit of the sandwich immunochromatographic assay (ICA), namely, the size of gold nanoparticles, the antibody concentration, the conjugation pH, and characteristics of membranes, are discussed. The impacts of these factors were quantitatively characterized and compared for the first time using the same antigen (potato virus X). The antibody–colloidal gold conjugates synthesized at pH 9.0–9.5 (the pH was examined in the range from 7.5 to 10.0) and at an antibody concentration of 15 μg/mL (the concentration was tested from 10 to 100 μg/mL) demonstrated maximum binding with the analyte. The relationship between the size of gold nanoparticles and the ICA detection limit was determined. The detection limit decreases from 80 to 3 ng/mL (for antibodies with K D = 1.0 × 10-9 M, data were obtained using a BIAcore X instrument) for a series of particles with a diameter from 6.4 to 33.4 nm (electron microscopy and dynamic light scattering data). In the case of larger particles (52 nm in diameter), the detection limit increases and reaches 9 ng/mL. A 10 mM phosphate buffer, pH 8, and a 50 mM phosphate buffer, pH 7, were the conditions of choice for the deposition of reactants. Taking into account these facts, we developed a lateral-flow test system for the rapid (10 min) detection of potato virus X in plant leaves. The ICA provided a visual detection limit of 3 ng/mL. In the case of the instrumental processing, potato virus X can be determined in the concentration range from 3 to 300 ng/mL with a detection limit 2 ng/mL.

The detection limit of immunochromatographic test systems, corresponding average diameters of the gold nanoparticles in the conjugates and color intensities in the test zones

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Leuvering J, Thal P, van der Waart M, Schuurs A (1980) J Immunoassay 1:77–91

    Article  CAS  Google Scholar 

  2. Zuk R, Ginsberg V, Houts T, Rabbie J, Merrick H, Ullman E, Fischer M, Sizto C, Stiso S, Litman D (1985) Clin Chem 31(7):1144–1150

    CAS  Google Scholar 

  3. von Lode P (2005) Clin Biochem 38(7):591–606

    Article  Google Scholar 

  4. Posthuma-Trumpie G, Korf J, van Amerongen A (2009) Anal Bioanal Chem 393(2):569–582

    Article  CAS  Google Scholar 

  5. Zhang G, Guo J, Wang X (2009) Methods Mol Biol 504:169–183

    Article  CAS  Google Scholar 

  6. Paek S-H, Lee S-H, Cho J-H, Kim Y-S (2000) Methods 22(1):53–60

    Article  CAS  Google Scholar 

  7. Kolosova A, De Saeger S, Sibanda L, Verheijen R, Van Peteghem C (2007) Anal Bioanal Chem 389(7):2103–2107

    Article  CAS  Google Scholar 

  8. Atabekov J, Dobrov E, Karpova O, Rodionova N (2007) Mol Plant Pathol 8(5):667–675

    Article  CAS  Google Scholar 

  9. Loebenstein G, Berger PH, Brunt AA, Lawson RH (2001) Virus and virus-like diseases of potatoes and production of seed-potatoes. Springer, Dordrecht

    Google Scholar 

  10. OEPP/EPPO (2004) EPPO Bull 34(2):271–279

    Article  Google Scholar 

  11. OEPP/EPPO (2006) EPPO Bull 36(3):429–440

    Article  Google Scholar 

  12. Rasooly F, Herold KE (eds) (2009) Biosensors and biodetection. Methods and protocols, vol 2. Electrochemical and mechanical detectors, lateral flow and ligands for biosensors. Methods in molecular biology vol 504. Humana, New York

    Google Scholar 

  13. Qian SZ, Bau HH (2004) Anal Biochem 326(2):211–224

    Article  CAS  Google Scholar 

  14. Qian S, Bau HH (2003) Anal Biochem 322(1):89–98

    Article  CAS  Google Scholar 

  15. Lain S, Riechmann J, Mendez E, Garcia JA (1988) Virus Res 10(4):325–341

    Article  CAS  Google Scholar 

  16. Byzova N, Safenkova I, Chirkov S, Avdienko V, Guseva A, Mitrofanova I, Zherdev A, Dzantiev B, Atabekov J (2010) Biochem Mosc 75(11):1393–1403

    Article  CAS  Google Scholar 

  17. Sitta Sittampalam G, Smith WC, Miyakawa TW, Smith DR, McMorris C (1996) J Immunol Methods 190(2):151–161

    Article  Google Scholar 

  18. Wong MS, Fong CC, Yang M (1999) BIAcore X instrument handbook. Biacore, Uppsala

    Google Scholar 

  19. Safenkova IV, Zherdev AV, Dzantiev BB (2010) J Immunol Methods 357(1–2):17–25

    Article  CAS  Google Scholar 

  20. Frens G (1973) Nat Phys Sci 241:20–22

    CAS  Google Scholar 

  21. Hermanson GT (2008) Bioconjugate techniques, 2nd edn. Academic, New York

    Google Scholar 

  22. Kim YM, Oh SW, Jeong SY, Pyo DJ, Choi EY (2003) Environ Sci Technol 37(9):1899–1904

    Article  CAS  Google Scholar 

  23. Brown MC (2009) In: Wong RC, Tse HY (eds) Lateral flow immunoassay. Humana, New York, pp 1–16

  24. Khlebtsov NG, Dykman LA (2010) J Quant Spectrosc Radiat Transf 111(1):1–35

    Article  CAS  Google Scholar 

  25. Liu X, Atwater M, Wang J, Huo Q (2007) Colloids Surf B Biointerfaces 58(1):3–7

    Article  CAS  Google Scholar 

  26. Oda M, Uchiyama S, Noda M, Nishi Y, Koga M, Mayanagi K, Robinson CV, Fukui K, Kobayashi Y, Morikawa K, Azuma T (2009) Mol Immunol 47(2–3):357–364

    Article  CAS  Google Scholar 

  27. Hlavacek WS, Posner RG, Perelson AS (1999) Biophys J 76(6):3031–3043

    Article  CAS  Google Scholar 

  28. Adamczyk M, Mattingly PG, Shreder K, Yu Z (1999) Bioconjug Chem 10(6):1032–1037

    Article  CAS  Google Scholar 

  29. Hayat MA (1990) Colloidal gold: principles, methods, and applications. Academic, San Diego

  30. Geddes CD, Lakowicz JR (2005) Radiative decay engineering. Topics in fluorescence spectroscopy, vol 8. Springer, New York

    Book  Google Scholar 

  31. Hoo CM, Starostin N, West P, Mecartney ML (2008) J Nanopart Res 10:89–96

    Article  CAS  Google Scholar 

  32. Geoghegan WD, Ackerman GA (1977) J Histochem Cytochem 25(11):1187–1200

    Article  CAS  Google Scholar 

  33. Adamson AW (1990) Physical chemistry of surfaces. Wiley, New York

    Google Scholar 

  34. Niemeyer CM (2001) Angew Chem Int Ed 40:4128–4158

    Article  CAS  Google Scholar 

  35. De Roe C, Courtoy PJ, Baudhuin P (1987) J Histochem Cytochem 35(11):1191–1198

    Article  Google Scholar 

  36. Thobhani S, Attree S, Boyd R, Kumarswami N, Noble J, Szymanski M, Porter RA (2010) J Immunol Methods 356(1-2):60–69

    Google Scholar 

  37. Nicolotti RA, Briles DE, Schroer JA, Davie JM (1980) J Immunol Methods 33(2):101–115

    Article  CAS  Google Scholar 

  38. Ryu KH, Hong JS (2008) In: Mahy BWJ, van Regenmortel MHV (eds) Encyclopedia of virology. Academic, Oxford, pp 310–313

  39. Harries PA, Nelson RS (2008) In: Mahy BWJ, van Regenmortel MHV (eds) Encyclopedia of virology. Academic, Oxford, pp 348–769

Download references

Acknowledgments

We are grateful to V.G. Avdienko and A.N. Guseva (Central Scientific Research Institute of Tuberculosis, Moscow) for the production of monoclonal antibodies, and to S.N. Chirkov (M.V. Lomonosov Moscow State University, Russia) for viral preparations. This work was supported by the Federal Targeted Program “Scientific and Scientific-Pedagogical Personnel of the Innovative Russia in 2009-2013” (government contracts no. 14.740.11.1065, May 24, 2011, and no. 02.740.11.0868, June 28, 2010), and the International Targeted Program of the Eurasian Economic Community “Innovative Biotechnologies for 2011-2015” (government contract no. 16.M04.11.0022, April 29, 2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina Safenkova.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 822 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Safenkova, I., Zherdev, A. & Dzantiev, B. Factors influencing the detection limit of the lateral-flow sandwich immunoassay: a case study with potato virus X. Anal Bioanal Chem 403, 1595–1605 (2012). https://doi.org/10.1007/s00216-012-5985-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-5985-8

Keywords

Navigation