Skip to main content
Log in

Regenerative, low-cost and switchable photoelectrochemical sensor for detection of Cu2+ using MnO2-GO heterojunction

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, we investigate the properties of manganese dioxide (MnO2) and graphene oxide (GO) to develop a new photoelectrochemical (PEC) sensor-based MnO2-GO heterojunction on stainless steel electrode for chemical detection of copper (Cu(II)) cation. During the PEC detection process and using chronoamperometry, the photocurrent density increases gradually with the addition of incremental Cu2+ concentration, achieving a relatively low detection limit (0.9120 µM) and a linear interval range from 0.01 to 110 µM with high selectivity and stability under neutral aqueous solution (pH 7.00). In addition, the PEC change of electrode state in presence of Cu(II) cation requires the oxidized state of MnO2-GO heterojunction; this can be reached by applying anodic potential to the electrode (E =  + 0.8 V). Thus, a switchable, low-cost, regenerative, and sensitive PEC sensor based on the change of MnO2-GO heterojunction surface state permits the selective detection of copper.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

source: 500-W xenon lamp with AM 1.5 G filter; the light intensity was adjusted to 100 mW cm–2

Fig. 3

source: 500-W xenon lamp with AM 1.5 G filter; the light intensity was adjusted to 100 mW cm–2

Similar content being viewed by others

References

  1. Hua M, Zhang S, Pan B, Zhang W, Lv L, Zhang Q (2012) Heavy metal removal from water/waste water by nanosized metal oxides: a review. J Hazard Mater 211:317–331

    Article  PubMed  Google Scholar 

  2. Sharma Y, Srivastava V, Singh V, Kaul S, Weng C (2009) Nanoadsorbents for the removal of metallic pollutants from water and wastewater. Environ Technol 30(6):583–609

    Article  CAS  PubMed  Google Scholar 

  3. Wu M, Liu C, Ma T, Tang M, Shen J, Ji H, Yang G (2020) Heterostructural composite of few-layered MoS2/hexagonal MoO2 particles/graphene as anode material for highly reversible lithium/sodium storage. Int J Energy Res 44(1):518–527

    Article  CAS  Google Scholar 

  4. Sun M, Lan B, Lin T, Cheng G, Ye F, Yu L, Cheng X, Zheng X (2013) Controlled synthesis of nanostructured manganese oxide:crystalline evolution and catalytic activities. Cryst Eng Comm 15:7010–7018

    Article  CAS  Google Scholar 

  5. Duan L, Sun B, Wei M, Luo S, Pan F, Xu A, Li X (2015) Catalytic degradation of Acid Orange 7 by manganese oxide octahedral molecular sieves with peroxymonosulfate under visible light irradiation. J Hazard Mater 285:356–365

    Article  CAS  PubMed  Google Scholar 

  6. Débart A, Paterson AJ, Bao J, Bruce PG (2008) α-MnO2 nanowires: a catalyst for the O2 electrode in rechargeable lithium batteries. Angew Chem Int Ed 47(24):4521–4524

    Article  Google Scholar 

  7. Guo D, Yu X, Shi W, Luo Y, Li Q, Wang T (2014) Facile synthesis of well-ordered manganese oxide nanosheet arrays on carbon cloth for high-performance supercapacitors. J Mater Chem 2:8833–8838

    Article  CAS  Google Scholar 

  8. Yin B, Zhang S, Jiao Y, Liu Y, Qu F, Wu X (2014) Facile synthesis of ultralong MnO2 nanowires as high performance supercapacitor electrodes and photocatalysts with enhanced photocatalytic activities. Cryst Eng Comm 16(43):9999–10005

    Article  CAS  Google Scholar 

  9. Liu Q, Ishibashi A, Fujigaya T, Mimura K, Gotou T, Uera K, Nakashima N (2011) Formation of self-organized graphene honeycomb films on substrates. Carbon 49(11):3424–3429

    Article  CAS  Google Scholar 

  10. Chang J, Zhou G, Christensen E, Heideman R, Chen J (2014) Graphene-based sensors for detection of heavy metals in water: a review. Anal Bioanal Chem 406:3957–3975

    Article  CAS  PubMed  Google Scholar 

  11. Shu J, Tang D (2019) Recent advances in photoelectrochemical sensing: from engineered photoactive materials to sensing devices and detection modes. Anal Chem 92(1):363–377

    Article  PubMed  Google Scholar 

  12. Ojani R, Safshekan S, Raoof JB (2014) Photoelectrochemical oxidation of hydrazine on TiO2 modified titanium electrode: its application for detection of hydrazine. J Solid State Electrochem 18(3):779–783

    Article  CAS  Google Scholar 

  13. Zhang H, Gao Q, Li H (2016) A novel photoelectrochemical hydrogen peroxide sensor based on nickel (II)-potassium hexacyanoferrate-graphene hybrid materials modified n-silicon electrode. J Solid State Electrochem 20(6):1565–1573

    Article  CAS  Google Scholar 

  14. Alves SA, Soares LL, Goulart LA, Mascaro LH (2016) Solvent effects on the photoelectrochemical properties of WO3 and its application as dopamine sensor. J Solid State Electrochem 20(9):2461–2470

    Article  CAS  Google Scholar 

  15. Xu H, Huang D, Wu Y, Di J (2016) Photoelectrochemical determination of Cu2+ ions based on assembly of Au/ZnS nanoparticles. Sens Actuators, B Chem 235:432–438

    Article  CAS  Google Scholar 

  16. Foo CY, Lim HN, Pandikumar A, Huang NM, Ng YH (2016) Utilization of reduced graphene oxide/cadmium sulfide-modified carbon cloth for visible-light-prompt photoelectrochemical sensor for copper (II) ions. J Hazard Mater 304:400–408

    Article  CAS  PubMed  Google Scholar 

  17. Liu Y, Li R, Gao P, Zhang Y, Ma H, Yang J, Du B, Wei Q (2015) A signal-off sandwich photoelectrochemical immunosensor using TiO2 coupled with CdS as the photoactive matrix and copper (II) ion as inhibitor. Biosens Bioelectron 65:97–102

    Article  CAS  PubMed  Google Scholar 

  18. Zhang D (2018) A novel signal-on photoelectrochemicalsensing platform based on biosynthesis of CdS quantum dots sensitizing ZnO nanorod arrays. Sens Actuators, B Chem 261:515–521

    Article  Google Scholar 

  19. Wang H, Ye H, Zhang B, Zhao F, Zeng B (2017) Electrostatic interaction mechanism based synthesis of a Z-scheme BiOI−CdS photocatalyst for selective and sensitive detection of Cu2+. Journal of Materials Chemistry A 5(21):10599–10608

    Article  CAS  Google Scholar 

  20. Huang F, Pu F, Lu X, Zhang H, Xia Y, Huang W, Li Z (2013) Photoelectrochemical sensing of Cu2+ ions with SnO2/CdS heterostructural films. Sens Actuators, B Chem 183:601–607

    Article  CAS  Google Scholar 

  21. Wang J, Pan Y, Jiang L, Liu M, Liu F, Jia M, Lai Y (2019) Photoelectrochemical determination of Cu2+ using a WO3/CdS heterojunction photoanode. ACS Appl Mater Interfaces 11(41):37541–37549

    Article  CAS  PubMed  Google Scholar 

  22. Tang J, Li J, Zhang Y, Kong B, Yiliguma WY, QuanY CH, Al-Enizi AM, Gong X, Zheng G (2015) Mesoporous Fe2O3-CdS heterostructures for real-time photoelectrochemical dynamic probing of Cu2+. Anal Chem 87:6703–6708

    Article  CAS  PubMed  Google Scholar 

  23. Liang D, Liang X, Zhang Z, Wang H, Zhang N, Wang J, Qiu X (2020) A regenerative photoelectrochemical sensor based on functional porous carbon nitride for Cu2+ detection. Microche J 156:104922

  24. Zeng H, Liu Y, Xu Z, Wang Y, Chai Y, Yuan R, Liu H (2019) Construction of a Zscheme gC3 N4/Ag/AgI heterojunction for highly selective photoelectrochemical detection of hydrogen sulfide. Chem Commun 55(79):11940–11943

    Article  CAS  Google Scholar 

  25. Moulai F, Fellahi O, Messaoudi B, Hadjersi T, Zerroual L (2018) Electrodeposition of nanostructured γ-MnO2 film for photodegradation of Rhodamine B. Ionics 24(7):2099–2109

    Article  CAS  Google Scholar 

  26. Bahrami A, Kazeminezhad I, Abdi Y (2019) Pt-Ni/rGO counter electrode: electrocatalytic activity for dye-sensitized solar cell. Superlattices Microstruct 125:125–137

    Article  CAS  Google Scholar 

  27. Maghraoui-Meherzi H, Nasr TB, Dachraoui M (2013) Synthesis, structure and optical properties of Sb2Se3. Mater Sci Semicond Process 16(1):179–184

    Article  CAS  Google Scholar 

  28. Pagnanelli F, Sambenedetto C, Furlani G, Vegliò F, Toro L (2007) Preparation and characterisation of chemical manganese dioxide: effect of the operating conditions. J Power Sources 166(2):567–577

    Article  CAS  Google Scholar 

  29. Dubal DP, Dhawale DS, Gujar TP, Lokhande CD (2011) Effect of different modes of electrodeposition on supercapacitive properties of MnO2 thin films. Appl Surf Sci 257(8):3378–3382

    Article  CAS  Google Scholar 

  30. Julien CM, Massot M, Poinsignon C (2004) Lattice vibrations of manganese oxides: Part I. Periodic structures. Spectrochimica Acta Part A: Mole Biomole Spectros 60(3):689–700

  31. Kumar NA, Gambarelli S, Duclairoir F, Bidan G, Dubois L (2013) Facile one-pot synthesis of graphene oxide by sonication assisted mechanochemical approach and its surface chemistry. J Mater Chem A1(8):2789–2794

    Article  Google Scholar 

  32. Mondal J, Marandi M, Kozlova J, Merisalu M, Niilisk A, Sammelselg V (2014) Protection and functionalizing of stainless steel surface by graphene oxide-polypyrrole composite coating. J Chem Chem Eng 8:786–793

    CAS  Google Scholar 

  33. Yu X, Chen X, Ding X, Chen X, Yu X, Zhao X (2019) High-sensitivity and low hysteresis humidity sensor based on hydrothermally reduced grapheme oxide/nanodiamond. Sens Actuators, B Chem 283:761–768

    Article  CAS  Google Scholar 

  34. Landolsi Z, Assaker IB, Nunes D, Fortunato E, Martins R, Chtourou R, Ammar S (2020) Enhanced electrical and photocatalytic properties of porous TiO2 thin films decorated with Fe2O3 nanoparticles. J Mater Sci: Mater Electron 31(23):20753–20773

    CAS  Google Scholar 

  35. Azani A, Halin DSC, Razak KA, Abdullah MMAB, Salleh MAAM, Mahmed N, Ramli MM, Sepeai S (2019) Microstructure and wettability of graphene oxide/TiO2 thin film prepared via sol-gel method. In IOP Conf Series: Mater Sci Eng 551(1):012099. IOP Publishing

  36. Lamouchi A, Slimi B, Assaker IB, Gannouni M, Chtourou R (2016) Correlation between SSM substrate effect and physical properties of ZnO nanowires electrodeposited with or without seed layer for enhanced photoelectrochemical applications. The European Physical Journal Plus 131(6):1–11

    Article  CAS  Google Scholar 

  37. Ahmad J, Wahid M, Majid K (2020) In situ construction of hybrid MnO2 @ GO heterostructures for enhanced visible light photocatalytic, anti-inflammatory and anti-oxidant activity. New J Chem 44(26):11092–11104

    Article  CAS  Google Scholar 

  38. Lamouchi A, Assaker IB, Chtourou R (2019) Enhanced photoelectrochemical activity of MoS2-decorated ZnO nanowires electrodeposited onto stainless steel mesh for hydrogen production. Appl Surf Sci 478:937–945

    Article  CAS  Google Scholar 

  39. Chen H, Zhou S, Chen M, Wu L (2012) Reduced graphene oxide–MnO2 hollow sphere hybrid nanostructures as high-performance electrochemical capacitors. J Mater Chem 22(48):25207–25216

    Article  CAS  Google Scholar 

  40. Fei H, Saha N, Kazantseva N, Moucka R, Cheng Q, Saha P (2017) A highly flexible supercapacitor based on MnO2/RGO nanosheets and bacterial cellulose-filled gel electrolyte. Materials 10(11):1251

    Article  PubMed Central  Google Scholar 

  41. Zhu C, Guo S, Fang Y, Han L, Wang E, Dong S (2011) One-step electrochemical approach to the synthesis of graphene/MnO2 nanowall hybrids. Nano Res 4(7):648–657

    Article  CAS  Google Scholar 

  42. Radhiyah AA, Izwan MI, Baiju V, Feng CK, Jamil I, Jose R (2015) Doubling of electrochemical parameters via the pre-intercalation of Na+ in layered MnO2 nanoflakes compared to α-MnO2 nanorods. RSC Adv 5(13):9667–9673

    Article  CAS  Google Scholar 

  43. Misnon II, Jose R (2017) Synthesis and electrochemical evaluation of the PANI/δ-MnO2 electrode for high performing asymmetric supercapacitors. New J Chem 41(14):6574–6584

    Article  CAS  Google Scholar 

  44. Hammami A, Raouafi N, Mirsky VM (2018) Electrically controlled Michael addition: addressing of covalent immobilization of biological receptors. Biosens Bioelectron 121:72–79

    Article  CAS  PubMed  Google Scholar 

  45. Kim TG, Ryu H, Lee WJ, Yoon JH (2015) Effects of graphene oxide (GO) on GO-Cu2O composite films grown by using electrochemical deposition for a PEC photoelectrode. J Korean Phys Soc 66(10):1586–1592

    Article  CAS  Google Scholar 

  46. Yeh TF, Cihlář J, Chang CY, Cheng C, Teng H (2013) Roles of graphene oxide in photocatalytic water splitting. Mater Today 16(3):78–84

    Article  CAS  Google Scholar 

  47. Merian E, Clarkson TW (1991) Metals and their compounds in the environment. Vch

  48. Wang P, Huang D, Guo W, Di J (2018) Photoelectrochemical sensing for hydroquinone based on gold nanoparticle-modified indium tin oxide glass electrode. J Solid State Electrochem 22(1):123–128

    Article  CAS  Google Scholar 

  49. Hammami A, Sahli R, Raouafi N (2016) Indirect amperometric sensing of dopamine using a redox-switchable naphthoquinone-terminated self-assembled monolayer on gold electrode. Microchim Acta 183(3):1137–1144

    Article  CAS  Google Scholar 

Download references

Funding

Authors would like to acknowledge the financial support of Tunisian Ministry of Higher Education and Scientific Research (PEJC19PEJC04-01 project (Programme d’Encouragement des Jeunes Chercheurs PEJC, 2ème Edition (2018))). Prof. Radhaoune Chtourou is also grateful for the financial support of Research and Technology Center of Energy (CRTEn), from Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Asma Hammami or Ibtissem Ben Assaker.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hammami, A., Assaker, I.B. & Chtourou, R. Regenerative, low-cost and switchable photoelectrochemical sensor for detection of Cu2+ using MnO2-GO heterojunction. J Solid State Electrochem 26, 211–218 (2022). https://doi.org/10.1007/s10008-021-05092-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-021-05092-9

Keywords

Navigation