Skip to main content
Log in

A sensitive photoelectrochemical sensor based on a green nano-Cu3V2O8-modified graphite pencil electrode for determination of acetaminophen

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, a new photoelectrochemical sensor based on Cu3V2O8 nanostructure-doped poly ethylene glycol-modified pencil graphite electrode was prepared and was applied for determination of acetaminophen. The electrochemical performance of this new sensor was examined by cyclic voltammetry, differential pulse voltammetry and Chronoamperometry. The experimental conditions were changed and optimized. The dynamic range of this new sensor was 10–11–10–3 M (R2 = 0.96) with detection limit 0.01 nM. Results showed the oxidation of acetaminophen is a diffusion control phenomenon and the diffusion coefficient was also calculated. Moreover, the bandgap of Cu3V2O8 nanoparticles and photoelectrochemical mechanism of the modified sensor was investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. W.W. Zhao, J.J. Xu, H.Y. Chen, Photoelectrochemical DNA biosensors. Chem. Rev. 114(15), 7421–7441 (2014)

    CAS  Google Scholar 

  2. H.J. Jeon, Y.-K. Choi, K.-G. Song, S.H. Lee, Y.-H. Yang, H. Kim, S. Kim, R. Kumaran, S.W. Hong, H.J. Kim, Development of a photoelectrochemical sensor for monitoring algal biomass (Chlorella vulgaris). Sens. Actuators B 185, 405–410 (2013)

    CAS  Google Scholar 

  3. W. Tu, W. Wang, J. Lei, S. Deng, H. Ju, Chemiluminescence excited photoelectrochemistry using graphene-quantum dots nanocomposite for biosensing. Chem. Commun. (Cambridge, U.K.) 48(52), 6535–6537 (2012)

    CAS  Google Scholar 

  4. W. Ma, L. Wang, N. Zhang, D. Han, X. Dong, L. Niu, Biomolecule-free, selective detection of o-diphenol and its derivatives with WS2/TiO2-based photoelectrochemical platform. Anal. Chem. 87(9), 4844–4850 (2015)

    CAS  Google Scholar 

  5. Wu. Wan-Yu, Y.-Y. Tsou, TiO2 beads as photocatalyst and photoelectrode for dye-sensitized solar cells synthesized by a microwave-assisted hydrothermal method. Int. J. Energy Res. 39, 1420–1429 (2015)

    Google Scholar 

  6. D. Zheng, X. Jiang, M. Liu, X. Zhao, W. Wang, G. Sun, 3D Si/ITO/WO3 photoelectrode with a micropost array structure for photocatalysis enhancement. J. Micromech. Microeng. 27, 115011 (2017)

    Google Scholar 

  7. Y. Xiong, I. Dabo, Influence of surface restructuring on the activity of SrTiO3 photoelectrodes for photocatalytic hydrogen reduction. Phys. Rev. Mater. 3, 065801 (2019)

    CAS  Google Scholar 

  8. S.N. Mohd Nasir, M.Y. Sulaiman, M. Ebadi, N. Ahmad Ludin, M.A. Ibrahim, M.A. Mat Teridi, Metal oxide BiVO4 as photoelectrode in photoelectrochemical solar water oxidation. Solid State Phenom. 253, 41–58 (2016)

    Google Scholar 

  9. R.M. Kakhki, R. Tayebee, F. Ahsani, New and highly efficient Ag doped ZnO visible nano photocatalyst for removing of methylene blue. J. Mater. Sci.: Mater. Electron. 28, 5941–5952 (2017)

    Google Scholar 

  10. R.M. Kakhki, A. Khorrampoor, M. Rabbani, F. Ahsani, Visible light photocatalytic degradation of textile waste water by Co doped NiFe2O4 nanocomposite. J. Mater. Sci.: Mater. Electron. 28(5), 4095–4101 (2016)

    Google Scholar 

  11. R.M. Kakhki, F. Ahsani, N. Mir, Enhanced photocatalytic activity of CuO–SiO2 nanocomposite based on a new Cu nanocomplex. J. Mater. Sci.: Mater. Electron. 27(11), 11509–11517 (2016)

    Google Scholar 

  12. R.M. Kakhki, S. Hedayat, K. Mohammadzadeh, Novel, green and low cost synthesis of Ag nanoparticles with superior adsorption and solar based photocatalytic activity. J. Mater. Sci.: Mater. Electron. 30(9), 8788–8795 (2019)

    Google Scholar 

  13. R.M. Kakhki, F. Ahsani, New and effective ZnO and Zn3(VO4)2 visible nano photocatalysts with enhanced photocatalytic performance. J. Mater. Sci.: Mater. Electron. 29(5), 3767–3774 (2018)

    Google Scholar 

  14. R. Mohammadzadeh Kakhki, R. Tayebee, S. Hedayat, Phthalhydrazide nanoparticles as new highly reusable organic photocatalyst in the photodegradation of organic and inorganic contaminants. Appl. Organomet. Chem. 32(2), e4033 (2017)

    Google Scholar 

  15. R.M. Kakhki, A. Karimian, H. Hasan-nejad, F. Ahsani, Zinc oxide–nanoclinoptilolite as a superior catalyst for visible photo-oxidation of dyes and green synthesis of pyrazole derivatives. J. Inorg. Organomet. Polym. Mater. 29(4), 1358–1367 (2019)

    Google Scholar 

  16. S. Yaghoobi Rahni, R. Mohammadzadeh Kakhki, Facile and green synthesis of Cu3V2O8 nanostructures via Moringa peregrina natural extract as a high performance photo catalyst. Appl. Organomet. Chem. 34, e5392 (2020)

    CAS  Google Scholar 

  17. G. Rounaghi, R. Mohamadzadeh kakhki, H. Azizi-toupkanloo, Voltammetric determination of 4-nitrophenol using a modified carbon paste electrode based on a new synthetic crown ether/silver nanoparticles. Mater. Sci. Eng. C 32(2), 172–177 (2012)

    CAS  Google Scholar 

  18. A.T.E. Vilian, M. Rajkumar, S. Chen, In situ electrochemical synthesis of highly loaded zirconium nanoparticles decorated reduced graphene oxide for the selective determination of dopamine and paracetamol in presence of ascorbic acid. Colloids Surf. B 115, 295 (2014)

    Google Scholar 

  19. E. Aydindogan, S. Balaban, S. Evran, H. Coskunol, S. Timur, A bottom-up approach for developing aptasensors for abused drugs: biosensors in forensics. Biosensors 9(4), 118 (2019)

    CAS  Google Scholar 

  20. G. Rounaghi, R.M. Kakhki, Preparation and electrochemical application of a new biosensor based on plant tissue/polypyrrole for determination of acetaminophen. Bull. Mater. Sci. 35(5), 811–816 (2012)

    CAS  Google Scholar 

  21. M. Alijanianzadeh, F. Qadami, A. Molaeirad, Detection of methamphetamine using aptamer-based biosensor chip and cyclic voltammetry technique. J. Indian Chem. Soc. (2021). https://doi.org/10.1016/j.jics.2021.100189

    Article  Google Scholar 

  22. F.F. Bobinihi, O.E. Fayemi, D.C. Onwudiwe, Synthesis, characterization, and cyclic voltammetry of nickel sulphide and nickel oxide nanoparticles obtained from Ni (II) dithiocarbamate. Mater. Sci. Semicond. Process. 121, 105315 (2021)

    CAS  Google Scholar 

  23. S.R. Priyanka, K.P. Latha, Chem. Data Collect. 35, 100769 (2021)

    CAS  Google Scholar 

  24. M.M. Vinay, Y. Arthoba Nayaka, Iron oxide (Fe2O3) nanoparticles modified carbon paste electrode as an advanced material for electrochemical investigation of paracetamol and dopamine. J. Sci.: Adv. Mater. Devices 4, 442–450 (2019)

    Google Scholar 

  25. F. Magesa, Y. Wu, S. Dong, Y. Tian, G. Li, J.M. Vianney, J. Buza, J. Liu, Q. He, Electrochemical sensing fabricated with Ta2O5 nanoparticle-electrochemically reduced graphene oxide nanocomposite for the detection of oxytetracycline. Biomolecules 10(1), 110 (2020)

    CAS  Google Scholar 

  26. V. Sivakumar, R. Suresh, K. Giribabu, R. Manigandan, S. Munusamy, S. Praveen Kumar, S. Muthamizh, V. Narayanan, Copper vanadate nanoparticles: synthesis, characterization and its electrochemical sensing property. J. Mater. Sci.: Mater. Electron. 25, 1485–1491 (2014)

    CAS  Google Scholar 

  27. S.M. Azab, A.M. Fekry, Role of green chemistry in antipsychotics’ electrochemical investigations using a nontoxic modified sensor in McIlvaine buffer solution. ACS Omega 4(1), 25–30 (2019)

    CAS  Google Scholar 

  28. B.N. Chandrashekar, B.K. Swamy, M. Pandurangachar, S.S. Shankar, O. Gilbert, J.G. Manjunatha, B.S. Sherigara, Electrochemical oxidation of dopamine at polyethylene glycol modified carbon paste electrode: a cyclic voltammetric study. Int. J. Electrochem. Sci. 5, 578–592 (2010)

    Google Scholar 

  29. C.E. Hotchen, I.J. Maybury, G.W. Nelson, J.S. Foord, P. Holdwayd, F. Marken, Amplified electron transfer at poly-ethylene-glycol (PEG) grafted electrodes. Phys. Chem. Chem. Phys. 17, 11260–11268 (2015)

    CAS  Google Scholar 

  30. A. Ali, M. Athar, M. Ahmed, K. Nadeem, G. Murtaza, U. Farooq, M. Salman, Stability-indicating HPLC-PDA assay for simultaneous determination of paracetamol, thiamine and pyridoxal phosphate in tablet formulations. Acta Pharm. 69, 249–259 (2019)

    CAS  Google Scholar 

  31. M. Lecoeur, G. Rabenirina, N. Schifano, P. Odou, S. Ethgen, G. Lebuffe, C. Foulon, Determination of acetaminophen and its main metabolites in urine by capillary electrophoresis hyphenated to mass spectrometry. Talanta 205, 120108 (2019)

    CAS  Google Scholar 

  32. F. Shihana, D. Dissanayake, P. Dargan, A. Dawson, A modified low-cost colorimetric method for paracetamol (acetaminophen) measurement in plasma. Clin. Toxicol. 48(1), 42–46 (2010)

    CAS  Google Scholar 

  33. C.M. El-Maraghy, N.T. Lamie, Three smart spectrophotometric methods for resolution of severely overlapped binary mixture of ibuprofen and paracetamol in pharmaceutical dosage form. BMC Chem. (2019). https://doi.org/10.1186/s13065-019-0618-3

    Article  Google Scholar 

  34. H. Montaseri, O. Adegoke, P.B. Forbes, Development of a thiol-capped core/shell quantum dot sensor for acetaminophen. S. Afr. J. Chem. 72, 108–117 (2019)

    CAS  Google Scholar 

  35. Y.V. Reddy, S. Bathinapatla, T. Łuczak, M. Osińska, H. Maseed, P. Ragavendra, L.S. Sarma, V.V. Srikanth, G. Madhavi, An ultra-sensitive electrochemical sensor for the detection of acetaminophen in the presence of etilefrine using bimetallic Pd–Ag/reduced graphene oxide nanocomposites. New J. Chem. 42, 3137–3146 (2018)

    Google Scholar 

  36. C. Martínez-Sánchez, F. Montiel-González, V. Rodríguez-González, Electrochemical sensing of acetaminophen using a practical carbon paste electrode modified with a graphene oxide-Y2O3 nanocomposite. J. Taiwan Inst. Chem. Eng. 96, 382–389 (2019)

    Google Scholar 

  37. A.U. Alam, Y. Qin, M.M. Howlader, N.X. Hu, M.J. Deen, Electrochemical sensing of acetaminophen using multi-walled carbon nanotube and β-cyclodextrin. Sens. Actuators B 254, 896–909 (2018)

    CAS  Google Scholar 

  38. H. Beitollahi, F. Garkani-Nejad, S. Tajik, M.R. Ganjali, Voltammetric determination of acetaminophen and tryptophan using a graphite screen printed electrode modified with functionalized graphene oxide nanosheets within a Fe3O4@SiO2 nanocomposite. Iran. J. Pharm. Res. 18(1), 80–90 (2019)

    CAS  Google Scholar 

  39. R.C. Engstrom, V.A. Strasser, Characterization of electrochemically pretreated glassy carbon electrodes. Anal. Chem. 56(2), 136–141 (1984)

    CAS  Google Scholar 

  40. K. Shi, K.K. Shiu, Determination of uric acid at electrochemically activated glassy carbon electrode. Electroanalysis 13(16), 1319–1325 (2001)

    CAS  Google Scholar 

  41. S. Thiagarajan, T.H. Tsai, S.M. Chen, Easy modification of glassy carbon electrode for simultaneous determination of ascorbic acid, dopamine and uric acid. Biosens. Bioelectron. 24(8), 2712–2715 (2009)

    CAS  Google Scholar 

  42. G. Rounaghi, R.M.Z. Kakhki, H. Sadeghian, A new cerium (III) ion selective electrode based on 2, 9-dihydroxy-1, 10-diphenoxy-4, 7-dithia decane, a novel synthetic ligand. Electrochim. Acta 56(27), 9756–9761 (2011)

    CAS  Google Scholar 

  43. R.M. Zadeh kakhki, G. Rounaghi, Selective uranyl cation detection by polymeric ion selective electrode based on benzo-15-crown-5. Mater. Sci. Eng. C 31(8), 1637–1642 (2011)

    Google Scholar 

  44. R.M. Zadeh kakhki, Application of nanoparticles in the potentiometric ion selective electrodes. Russ. J. Electrochem. 49(5), 458–465 (2013)

    Google Scholar 

  45. M. Zidan, W.T. Tan, Z. Zainal, A.H. Abdullah, J.K. Goh, Int. J. Electrochem. Sci. 6, 279 (2011)

    CAS  Google Scholar 

  46. T. Skeika, M.F. de Faria, N. Nagata, C.A. Pessoa, Simultaneous voltammetric determination of dypirone and paracetamol with carbon paste electrode and multivariate calibration methodology. J. Braz. Chem. Soc. 19(4), 762 (2008)

    CAS  Google Scholar 

  47. S.M. Chen, K.T. Peng, J. Electroanal. Chem. 547, 179–189 (2003)

    CAS  Google Scholar 

  48. A.S. Bhadwal, R.M. Tripathi, R.K. Gupta, N. Kumar, R.P. Singh, A. Shrivastav, Biogenic synthesis and photocatalytic activity of CdS nanoparticles. RSC Adv. 4, 9484 (2014)

    CAS  Google Scholar 

  49. R. Gill, M. Zayats, I. Willner, Semiconductor quantum dots for bioanalysis. Angew. Chem. Int. Ed. Engl. 47(40), 7602–7625 (2008)

    CAS  Google Scholar 

  50. Z. Cai, M. Rong, T. Zhao, L. Zhao, Y. Wang, X. Chen, Solar-induced photoelectrochemical sensing for dopamine based on TiO2 nanoparticles on g-C3N4 decorated graphene nanosheets. J. Electroanal. Chem. 759, 32–37 (2015)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roya Mohammadzadeh kakhki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadzadeh kakhki, R., Yaghoobi Rahni, S. A sensitive photoelectrochemical sensor based on a green nano-Cu3V2O8-modified graphite pencil electrode for determination of acetaminophen. J Mater Sci: Mater Electron 33, 1798–1806 (2022). https://doi.org/10.1007/s10854-021-07317-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07317-z

Navigation