Skip to main content

Advertisement

Log in

Recent advances in graphene-based nanomaterials: properties, toxicity and applications in chemistry, biology and medicine

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

This review (with 239 refs.) summarizes the progress that has been made in applications of graphene-based nanomaterials (such as plain graphene, graphene oxides, doped graphene oxides, graphene quantums dots) in biosensing, imaging, drug delivery and diagnosis. Following an introduction into the field, a first large section covers the toxicity of graphene and its derivatives (with subsections on bacterial toxicity and tissue toxicity). The use of graphene-based nanomaterials in sensors is reviewed next, with subsections on electrochemical, FET-based, fluorescent, chemiluminescent and colorimetric sensors and probes. The large field of imaging is treated next, with subchapters on optical, PET-based, and magnetic resonance based methods. A concluding section summarizes the current status, addresses current challenges, and gives an outlook on potential future trends.

Schematic presentation of the potential applications of graphene-based materials in life science and biomedicine, emphatically reflected in some vital areas such as DNA analysis, biological monitoring, drug delivery, in vitro labelling, in vivo imaging, tumor target, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Novoselov KS (2004) Electric field effect in atomically thin carbon films. Science 306:666–669. https://doi.org/10.1126/science.1102896

    Article  CAS  PubMed  Google Scholar 

  2. Wan X, Huang Y, Chen Y (2012) Focusing on energy and optoelectronic applications: a journey for graphene and graphene oxide at large scale. Acc Chem Res 45:598–607. https://doi.org/10.1021/ar200229q

    Article  CAS  PubMed  Google Scholar 

  3. Xia Y, Li R, Chen R, Wang J, Xiang L (2018) 3D architectured Graphene/Metal oxide hybrids for gas sensors: a review. Sensors 18:1456. https://doi.org/10.3390/s18051456

    Article  CAS  PubMed Central  Google Scholar 

  4. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200. https://doi.org/10.1038/nature04233

    Article  CAS  PubMed  Google Scholar 

  5. Novoselov KS, Jiang Z, Zhang Y, Morozov SV, Stormer HL, Zeitler U, Maan JC, Boebinger GS, Kim P, Geim AK (2007) Room-temperature quantum Hall effect in graphene. Science 315:1379–1379. https://doi.org/10.1126/science.1137201

    Article  CAS  PubMed  Google Scholar 

  6. Zhang Y, Tan Y, Stormer HL, Kim P (2005) Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438:201–204. https://doi.org/10.1038/nature04235

    Article  CAS  PubMed  Google Scholar 

  7. Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6:652–655. https://doi.org/10.1038/nmat1967

    Article  CAS  PubMed  Google Scholar 

  8. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388. https://doi.org/10.1126/science.1157996

    Article  CAS  PubMed  Google Scholar 

  9. Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-Based ultracapacitors. Nano Lett 8:3498–3502. https://doi.org/10.1021/nl802558y

    Article  CAS  PubMed  Google Scholar 

  10. Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK (2008) Fine structure constant defines visual tranparency of graphene. Science 320:1308–1308 doi: 0.1126/science.1156965.

    Article  CAS  PubMed  Google Scholar 

  11. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of Single-Layer graphene. Nano Lett 8:902–907. https://doi.org/10.1021/nl0731872

    Article  CAS  PubMed  Google Scholar 

  12. Zuo Y, Xu J, Zhu X, Duan X, Lu L, Yu Y (2019) Graphene-derived nanomaterials as recognition elements for electrochemical determination of heavy metal ions: a review. Microchim Acta 186:171. https://doi.org/10.1007/s00604-019-3248-5

    Article  CAS  Google Scholar 

  13. Song ZL, Dai X, Li M, Teng H, Song Z, Xie D, Luo X (2018) Biodegradable nanoprobe based on MnO2 nanoflowers and graphene quantum dots for near infrared fluorescence imaging of glutathione in living cells. Microchim Acta 185:485. https://doi.org/10.1007/s00604-018-3024-y

    Article  CAS  Google Scholar 

  14. Joshi N, Hayasaka T, Liu Y, Liu H, Oliveira ON, Lin L (2018) A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2D transition metal dichalcogenides. Microchim Acta 185:213. https://doi.org/10.1007/s00604-018-2750-5

    Article  CAS  Google Scholar 

  15. Ma L, Sun S, Wang Y, Jiang K, Zhu J, Li J, Lin H (2017) A graphene quantum dot-based fluorescent nanoprobe for hypochlorite detection in water and in living cells. Microchim Acta 184:3833–3840. https://doi.org/10.1007/s00604-017-2412-z

    Article  CAS  Google Scholar 

  16. Chen M, Li W, Ma C, Wu K, He H, Wang K (2019) Fluorometric determination of the activity of uracil-DNA glycosylase by using graphene oxide and exonuclease I assisted signal amplification. Microchim Acta 186:110. https://doi.org/10.1126/science.281.5385.2016

    Article  Google Scholar 

  17. Liu R, Cheng Z, Li T, Jiang X (2015) Investigation of two blood proteins binding to Cantharidin and Norcantharidin by multispectroscopic and chemometrics methods. J Lumin 157:398–410. https://doi.org/10.1016/j.jlumin.2014.08.029

    Article  CAS  Google Scholar 

  18. Baig N, Saleh TA (2018) Electrodes modified with 3D graphene composites: a review on methods for preparation, properties and sensing applications. Microchim Acta 185:283. https://doi.org/10.1007/s00604-018-2809-3

    Article  CAS  Google Scholar 

  19. Ge S, Lan F, Liang L, Ren N, Li L, Liu H, Yan M, Yu J (2017) Ultrasensitive photoelectrochemical biosensing of cell surface n-glycan expression based on the enhancement of nanogold-assembled mesoporous silica amplified by graphene quantum dots and hybridization chain reaction. ACS Appl Mater Interfaces 9:6670–6678. https://doi.org/10.1021/acsami.6b11966

    Article  CAS  PubMed  Google Scholar 

  20. Tabrizi MA, Ferré-Borrull J, Kapruwan P, Marsal LF (2019) A photoelectrochemical sandwich immunoassay for protein S100β, a biomarker for Alzheimer’s disease, using an ITO electrode modified with a reduced graphene oxide-gold conjugate and CdS-labeled secondary antibody. Microchim Acta 186:117. https://doi.org/10.1007/s00604-018-3159-x

    Article  CAS  Google Scholar 

  21. Akhavan O, Ghaderi E, Rahighi R (2012) Toward Single-DNA electrochemical biosensing by graphene nanowalls. ACS Nano 6:2904–2916. https://doi.org/10.1021/nn300261t

    Article  CAS  PubMed  Google Scholar 

  22. Shao Y, Wang J, Wu H, Liu J, Aksay IA, Lin Y (2010) Graphene based electrochemical sensors and biosensors: a review. Electroanal. 22:1027–1036. https://doi.org/10.1002/elan.200900571

    Article  CAS  Google Scholar 

  23. Akhavan O, Ghaderi E (2012) Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner. Carbon. 50:1853–1860. https://doi.org/10.1016/j.carbon.2011.12.035

    Article  CAS  Google Scholar 

  24. Akhavan O, Ghaderi E (2009) Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation. J Phys Chem C 113:20214–20220. https://doi.org/10.1021/jp906325q

    Article  CAS  Google Scholar 

  25. Akhavan O, Ghaderi E (2010) Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4:5731–5736. https://doi.org/10.1021/nn101390x

    Article  CAS  PubMed  Google Scholar 

  26. Hu W, Peng C, Luo W, Lv M, Li X, Li D, Huang Q, Fan C (2010) Graphene-Based antibacterial paper. ACS Nano 4:4317–4323. https://doi.org/10.1021/nn101097v

    Article  CAS  PubMed  Google Scholar 

  27. Ma J, Zhang J, Xiong Z, Yong Y, Zhao XS (2011) Preparation, characterization and antibacterial properties of silver-modified graphene oxide. J Mater Chem 21:3350–3352. https://doi.org/10.1039/c0jm02806a

    Article  CAS  Google Scholar 

  28. Akhavan O, Choobtashani M, Ghaderi E (2012) Protein degradation and RNA efflux of viruses photocatalyzed by Graphene-Tungsten oxide composite under visible light irradiation. J Phys Chem C 116:9653–9659. https://doi.org/10.1021/jp301707m

    Article  CAS  Google Scholar 

  29. Yang K, Zhang S, Zhang G, Sun X, Lee S, Liu Z (2010) Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett 10:3318–3323. https://doi.org/10.1021/nl100996u

    Article  CAS  PubMed  Google Scholar 

  30. Akhavan O, Ghaderi E, Aghayee S, Fereydooni Y, Talebi A (2012) The use of a glucose-reduced graphene oxide suspension for photothermal cancer therapy. J Mater Chem 22:13773–13781. https://doi.org/10.1039/c2jm31396k

    Article  CAS  Google Scholar 

  31. Robinson JT, Tabakman SM, Liang Y, Wang H, Casalongue HS, Daniel V, Dai H (2011) Ultrasmall reduced graphene oxide with high Near-Infrared absorbance for photothermal therapy. J Am Chem Soc 133:6825–6831. https://doi.org/10.1021/ja2010175

    Article  CAS  PubMed  Google Scholar 

  32. Yang K, Wan J, Zhang S, Tian B, Zhang Y, Liu Z (2012) The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power. Biomaterials. 33:2206–2214. https://doi.org/10.1016/j.biomaterials.2011.11.064

    Article  CAS  PubMed  Google Scholar 

  33. Liu Z, Robinson JT, Sun X, Dai H (2008) PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc 130:10876–10881. https://doi.org/10.1021/ja803688x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang L, Xia J, Zhao Q, Liu L, Zhang Z (2010) Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small. 6:537–544. https://doi.org/10.1002/smll.200901680

    Article  CAS  PubMed  Google Scholar 

  35. Zhang W, Guo Z, Huang D, Liu Z, Guo X, Zhong H (2011) Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide. Biomaterials. 32:8555–8561. https://doi.org/10.1016/j.biomaterials.2011.07.071

    Article  CAS  PubMed  Google Scholar 

  36. Heo C, Yoo J, Lee S, Jo A, Jung S, Yoo H, Lee YH, Suh M (2011) The control of neural cell-to-cell interactions through non-contact electrical field stimulation using graphene electrodes. Biomaterials. 32:19–27. https://doi.org/10.1016/j.biomaterials.2010.08.095

    Article  CAS  PubMed  Google Scholar 

  37. Agarwal S, Zhou X, Ye F, He Q, Chen GCK, Soo J, Boey F, Zhang H, Chen P (2010) Interfacing live cells with nanocarbon substrates. Langmuir. 26:2244–2247. https://doi.org/10.1021/la9048743

    Article  CAS  PubMed  Google Scholar 

  38. Jiang H, Li W, Lu X, Ling K (2018) Multiplexed determination of intracellular messenger RNA by using a graphene oxide nanoprobe modified with target-recognizing fluorescent oligonucleotides. Microchim Acta 185:552. https://doi.org/10.1007/s00604-018-3090-1

    Article  CAS  Google Scholar 

  39. Nelson T, Zhang B, Prezhdo OV (2010) Detection of nucleic acids with graphene nanopores: ab initio characterization of a novel sequencing device. Nano Lett 10:3237–3242. https://doi.org/10.1021/nl9035934

    Article  CAS  PubMed  Google Scholar 

  40. Gui W, Zhang J, Chen X, Yu D, Ma Q (2018) N-Doped graphene quantum dot@ mesoporous silica nanoparticles modified with hyaluronic acid for fluorescent imaging of tumor cells and drug delivery. Microchim Acta 185:66. https://doi.org/10.1007/s00604-017-2598-0

    Article  CAS  Google Scholar 

  41. Karthik R, Karikalan N, Chen SM, Gnanaprakasam P, Karuppiah C (2017) Voltammetric determination of the anti-cancer drug nilutamide using a screen-printed carbon electrode modified with a composite prepared from β-cyclodextrin, gold nanoparticles and graphene oxide. Microchim Acta 184:507–514. https://doi.org/10.1007/s00604-016-2037-7

    Article  CAS  Google Scholar 

  42. Guo Q, Li X, Shen C, Zhang S, Qi H, Li T, Yang M (2018) Electrochemical immunoassay for the protein biomarker mucin 1 and for MCF-7 cancer cells based on signal enhancement by silver nanoclusters. Microchim Acta 182:1483–1489. https://doi.org/10.1007/s00604-015-1471-2

    Article  CAS  Google Scholar 

  43. Banerjee AN (2018) Graphene and its derivatives as biomedical materials: future prospects and challenges. Interface Focus 8:20170056. https://doi.org/10.1098/rsfs.2017.0056

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zhang X, Zhou D, Sheng S, Yang J, Chen X, Xie G, Xiang H (2016) Electrochemical immunoassay for the cancer marker LMP-1 (Epstein-Barr virus-derived latent membrane protein 1) using a glassy carbon electrode modified with Pd@Pt nanoparticles and a nanocomposite consisting of graphene sheets and MWCNTs. Microchim Acta 183:2055–2062. https://doi.org/10.1007/s00604-016-1848-x

    Article  CAS  Google Scholar 

  45. Pirsaheb M, Mohammadi S, Salimi A, Payandeh M (2019) Functionalized fluorescent carbon nanostructures for targeted imaging of cancer cells: a review. Microchim Acta 186:231. https://doi.org/10.1007/s00604-019-3338-4

    Article  CAS  Google Scholar 

  46. Sun X, Wang H, Jian Y, Lan F, Zhang L, Liu H, Yu J (2018) Ultrasensitive microfluidic paper-based electrochemical/visual biosensor based on spherical-like cerium dioxide catalyst for miR-21 detection. Biosens Bioelectron 105:218–225. https://doi.org/10.1016/j.bios.2018.01.025

    Article  PubMed  Google Scholar 

  47. Yao J, Sun Y, Yang M, Duan Y (2012) Chemistry, physics and biology of graphene-based nanomaterials: new horizons for sensing, imaging and medicine. J Mater Chem 22:14313–14329. https://doi.org/10.1039/c2jm31632c

    Article  CAS  Google Scholar 

  48. Bai RG, Ninan N, Muthoosamy K, Manickam S (2018) Graphene: a versatile platform for nanotheranostics and tissue engineering. Prog Mater Sci 91:24–69. https://doi.org/10.1016/j.pmatsci.2017.08.004

    Article  CAS  Google Scholar 

  49. Kochmann S, Hirsch T, Wolfbeis OS (2012) Graphenes in chemical sensors and biosensors. Trends Anal Chem 39:87–113. https://doi.org/10.1016/j.trac.2012.06.004

    Article  CAS  Google Scholar 

  50. Li X, Wang Y, Shi L, Ma H, Zhang Y, Du B, Wu D, Wei Q (2017) A novel ECL biosensor for the detection of concanavalin a based on glucose functionalized NiCo2S4 nanoparticles-grown on carboxylic graphene as quenching probe. Biosens Bioelectron 96:113–120. https://doi.org/10.1016/j.bios.2017.04.050

    Article  CAS  PubMed  Google Scholar 

  51. Xiao FN, Wang M, Wang FB, Xia XH (2014) Graphene–ruthenium (II) complex composites for sensitive ECL immunosensors. Small. 10:706–716. https://doi.org/10.1002/smll.201301566

    Article  CAS  PubMed  Google Scholar 

  52. Zhu M, Tang Y, Wen Q, Li J, Yang P (2016) Dynamic evaluation of cell-secreted interferon gamma in response to drug stimulation via a sensitive electro-chemiluminescence immunosensor based on a glassy carbon electrode modified with graphene oxide, polyaniline nanofibers, magnetic beads, and gold nanoparticles. Microchim Acta 183:1739–1748. https://doi.org/10.1007/s00604-016-1804-9

    Article  CAS  Google Scholar 

  53. Wang CI, Wu WC, Periasamy AP, Chang HT (2014) Sensitive and selective DNA probe based on “turn-on” photoluminescence of C-dots@RGO. Anal Bioanal Chem 406:6917–6923. https://doi.org/10.1007/s00216-014-7658-2

    Article  CAS  PubMed  Google Scholar 

  54. Tong C, Zhao C, Liu B, Li B, Ai Z, Fan J, Wang W (2018) Sensitive detection of RNase a activity and collaborative drugs screening based on rGO and fluorescence probe. Anal Chem 90:2655–2661. https://doi.org/10.1021/acs.analchem.7b04429

    Article  CAS  PubMed  Google Scholar 

  55. Alizadeh N, Salimi A, Hallaj R, Fathi F, Soleimani F (2019) CuO/WO3 nanoparticles decorated graphene oxide nanosheets with enhanced peroxidase-like activity for electrochemical cancer cell detection and targeted therapeutics. Mater Sci Eng C 99:1374–1383. https://doi.org/10.1016/j.msec.2019.02.048

    Article  CAS  Google Scholar 

  56. Goreham RV, Schroeder KL, Holmes A, Bradley SJ, Nann T (2018) Demonstration of the lack of cytotoxicity of unmodified and folic acid modified graphene oxide quantum dots, and their application to fluorescence lifetime imaging of HaCaT cells. Microchim Acta 185:128. https://doi.org/10.1007/s00604-018-2679-8

    Article  CAS  Google Scholar 

  57. Hu W, Peng C, Lv M, Li X, Zhang Y, Chen N, Fan C, Huang Q (2011) Protein corona-mediated mitigation of cytotoxicity of graphene oxide. ACS Nano 5:3693–3700. https://doi.org/10.1021/nn200021j

    Article  CAS  PubMed  Google Scholar 

  58. Cai X, Lin M, Tan S, Mai W, Zhang Y, Liang Z, Lin Z, Zhang X (2012) The use of polyethyleneimine-modified reduced graphene oxide as a substrate for silver nanoparticles to produce a material with lower cytotoxicity and long-term antibacterial activity. Carbon. 50:3407–3415. https://doi.org/10.1016/j.carbon.2012.02.002

    Article  CAS  Google Scholar 

  59. Feng L, Liu Z (2011) Graphene in biomedicine: Opportunities and challenges. Nanomedicine-UK. 6:317–324. https://doi.org/10.2217/NNM.10.158

    Article  CAS  Google Scholar 

  60. Efremova LV, Vasilchenko AS, Rakov EG, Deryabin DG (2014) Toxicity of graphene shells, graphene oxide, and graphene oxide paper evaluated with escherichia coli Biotests. Biomed Res Int 2015:869361–869370. https://doi.org/10.1155/2015/107029

    Article  CAS  Google Scholar 

  61. Shen H, Zhang L, Liu M, Zhang Z (2012) Biomedical applications of graphene. Theranostics. 2:283–294. https://doi.org/10.7150/thno.3642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yang K, Feng L, Shi X, Liu Z (2012) Nano-graphene in biomedicine: theranostic applications. Chem Soc Rev 42:530–547. https://doi.org/10.1039/c2cs35342c

    Article  CAS  Google Scholar 

  63. Zhang Y, Nayak TR, Hong H, Cai W (2012) Graphene: a versatile nanoplatform for biomedical applications. Nanoscale. 4:3833–3842. https://doi.org/10.1039/c2nr31040f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. AM J, P K, AR O (2012) Recent advances in graphene family materials toxicity investigations. J Nanopart Res 14:1320–1340. https://doi.org/10.1007/s11051-012-1320-8.

    Article  Google Scholar 

  65. Bussy C, Aliboucetta H, Kostarelos K (2013) Safety considerations for graphene: lessons learnt from carbon nanotubes. Acc Chem Res 46:692–701. https://doi.org/10.1021/ar300199e

    Article  CAS  PubMed  Google Scholar 

  66. Sanchez VC, Jachak A, Hurt RH, Kane AB (2012) Biological interactions of Graphene-Family nanomaterials-an interdisciplinary review. Chem Res Toxicol 25:15–34. https://doi.org/10.1021/tx200339h

    Article  CAS  PubMed  Google Scholar 

  67. Jia PP, Sun T, Junaid M, Yang L, Ma YB, Cui ZS, Pei DS (2019) Nanotoxicity of different sizes of graphene (G) and graphene oxide (GO) in vitro and in vivo. Environ Pollut 247:595–606. https://doi.org/10.1016/j.envpol.2019.01.072

    Article  CAS  PubMed  Google Scholar 

  68. Ryoo SR, Kim YK, Kim MH, Min DH (2010) Behaviors of NIH-3T3 fibroblasts on Graphene/Carbon nanotubes: proliferation, focal adhesion, and gene transfection studies. ACS Nano 4:6587–6598. https://doi.org/10.1021/nn1018279

    Article  CAS  PubMed  Google Scholar 

  69. Yan L, Zhao F, Li S, Hu Z, Zhao Y (2011) Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes. Nanoscale. 3:362–382. https://doi.org/10.1039/c0nr00647e

    Article  CAS  PubMed  Google Scholar 

  70. Zhang Y, Ali SF, Dervishi E, Xu Y, Li Z, Casciano D, Biris AS (2010) Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells. ACS Nano 4:3181–3186. https://doi.org/10.1021/nn1007176

    Article  CAS  PubMed  Google Scholar 

  71. Liu S, Zeng TH, Hofmann M, Burcombe E, Wei J, Jiang R, Kong J, Chen Y (2011) Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5:6971–6980. https://doi.org/10.1021/nn202451x

    Article  CAS  PubMed  Google Scholar 

  72. Li J, Liu X, Lu J, Wang Y, Li G, Zhao F (2016) Anti-bacterial properties of ultrafiltration membrane modified by graphene oxide with nano-silver particles. J Colloid Interface Sci 484:107–115. https://doi.org/10.1016/j.jcis.2016.08.063

    Article  CAS  PubMed  Google Scholar 

  73. Ruiz ON, Fernando KAS, Wang B, Brown NA, Luo PG, Mcnamara ND, Vangsness M, Sun YP, Bunker CE (2011) Graphene oxide: a nonspecific enhancer of cellular growth. ACS Nano 5:8100–8107. https://doi.org/10.1021/nn202699t

    Article  CAS  PubMed  Google Scholar 

  74. Gurunathan S, Han JW, Dayem AA, Eppakayala V, Kim JH (2012) Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. Int J Nanomedicine 7:5901–5914. https://doi.org/10.2147/IJN.S37397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ou L, Song B, Liang H, Liu J, Feng X, Deng B (2016) Toxicity of graphene-family nanoparticles: a general review of the origins and mechanisms. Part Fibre Toxicol 13:57–80. https://doi.org/10.1186/s12989-016-0168-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kostarelos K, Novoselov KS (2014) Exploring the interface of graphene and biology. Science. 344:261–263. https://doi.org/10.1126/science.1246736

    Article  CAS  PubMed  Google Scholar 

  77. Hu W, Peng C, Luo W, Lv M, Li X, Li D, Huang Q, Fan C (2010) Graphene-based antibacterial paper. ACS Nano 4:4317–4323. https://doi.org/10.1021/nn101097v

    Article  CAS  PubMed  Google Scholar 

  78. Kaner EF, Lock CA, Mcavoy BR, Heather N, Gilvarry E (2011) Wrapping bacteria by graphene nanosheets for isolation from environment, reactivation by sonication, and inactivation by near-infrared irradiation. J Phys Chem B 115:6279–6288. https://doi.org/10.1021/jp200686k

    Article  CAS  Google Scholar 

  79. Reilly CA, Aust SD (1997) Peroxidase substrates stimulate the oxidation of hydralazine to metabolites which cause single-strand breaks in DNA. Chem Res Toxicol 10:328–334. https://doi.org/10.1021/tx960189l

    Article  CAS  PubMed  Google Scholar 

  80. Schinwald A, Murphy FA, Jones A, MacNee W, Donaldson K (2012) Graphene-Based nanoplatelets: a new risk to the respiratory system as a consequence of their unusual aerodynamic properties. ACS Nano 6:736–746. https://doi.org/10.1021/nn204229f

    Article  CAS  PubMed  Google Scholar 

  81. Drasler B, Kucki M, Delhaes F, Buerki-Thurnherr T, Vanhecke D, Korejwo D, Chortarea S, Barosova H, Hirsch C, Petri-Fink A, Rothen-Rutishauser B, Wick P (2018) Single exposure to aerosolized graphene oxide and graphene nanoplatelets did not initiate an acute biological response in a 3D human lung model. Carbon. 137:125–135. https://doi.org/10.1016/j.carbon.2018.05.012

    Article  CAS  Google Scholar 

  82. Tu Z, Achazi K, Schulz A, Muelhaupt R, Thierbach S, Ruehl E, Adeli M, Haag R (2017) Combination of surface charge and size controls the cellular uptake of functionalized graphene sheets. Adv Funct Mater 27:1701837. https://doi.org/10.1002/adfm.201701837

    Article  CAS  Google Scholar 

  83. Lu J, Zhu X, Tian S, Lv X, Chen Z, Jiang Y, Liao X, Cai Z, Chen B (2018) Graphene oxide in the marine environment: toxicity to Artemia salina with and without the presence of Phe and Cd2+. Chemosphere. 211:390–396. https://doi.org/10.1016/j.chemosphere.2018.07.140

    Article  CAS  PubMed  Google Scholar 

  84. Chatterjee N, Kim Y, Yang J, Roca CP, Joo S, Choi J (2017) A systems toxicology approach reveals the Wnt-MAPK crosstalk pathway mediated reproductive failure in Caenorhabditis elegans exposed to graphene oxide (GO) but not to reduced graphene oxide (rGO). Nanotoxicology. 11:76–86. https://doi.org/10.1080/17435390.2016.1267273

    Article  CAS  PubMed  Google Scholar 

  85. Maddinedi SB, Sonamuthu J, Yildiz SS, Han G, Cai Y, Gao J, Ni Q, Yao J (2018) Silk sericin induced fabrication of reduced graphene oxide and its in-vitro cytotoxicity, photothermal evaluation. J Photochem Photobiol B 186:189–196. https://doi.org/10.1016/j.jphotobiol.2018.07.020

    Article  CAS  PubMed  Google Scholar 

  86. Mu Q, Su G, Li L, Gilbertson BO, Yu LH, Zhang Q, Sun YP, Yan B (2012) Size-Dependent cell uptake of Protein-Coated graphene oxide nanosheets. ACS Appl Mater Interfaces 4:2259–2266. https://doi.org/10.1021/am300253c

    Article  CAS  PubMed  Google Scholar 

  87. Huang J, Zong C, Shen H, Liu M, Chen B, Ren B, Zhang Z (2012) Mechanism of cellular uptake of graphene oxide studied by Surface-Enhanced raman spectroscopy. Small. 8:2577–2584. https://doi.org/10.1002/smll.201102743

    Article  CAS  PubMed  Google Scholar 

  88. Tabish TA, Scotton CJ, Ferguson DCJ, Lin L, der Veen AV, Lowry S, Ali M, Jabeen F, Ali M, Winyard PG, Zhang S (2018) Biocompatibility and toxicity of graphene quantum dots for potential application in photodynamic therapy. Nanomedicine. 13:1923–1937. https://doi.org/10.2217/nnm-2018-0018

    Article  CAS  PubMed  Google Scholar 

  89. Li M, Gu MM, Tian X, Xiao BB, Lu S, Zhu W, Yu L, Shang ZF (2018) Hydroxylated-Graphene quantum dots induce DNA damage and disrupt microtubule structure in human esophageal epithelial cells. Toxicol Sci 164:339–352. https://doi.org/10.1093/toxsci/kfy090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Goreham RV, Schroeder KL, Holmes A, Bradley SJ, Nann T (2018) Demonstration of the lack of cytotoxicity of unmodified and folic acid modified graphene oxide quantum dots, and their application to fluorescence lifetime imaging of HaCaT cells. Microchim Acta 185:128–134. https://doi.org/10.1007/s00604-018-2679-8

    Article  CAS  Google Scholar 

  91. Singh SK, Singh MK, Nayak MK, Kumari S, Shrivastava S, Grà Cio JJ, Dash D (2011) Thrombus inducing property of atomically thin graphene oxide sheets. ACS Nano 5:4987–4996. https://doi.org/10.1021/nn201092p

    Article  CAS  PubMed  Google Scholar 

  92. Singh SK, Singh MK, Kulkarni PP, Sonkar VK, Grácio JJA, Dash D (2012) Amine-Modified graphene: Thrombo-Protective safer alternative to graphene oxide for biomedical applications. ACS Nano 6:2731–2740. https://doi.org/10.1021/nn300172t

    Article  CAS  PubMed  Google Scholar 

  93. M. Wojtoniszak, X. Chen, R.J. Kalenczuk, A. Wajda, Å.A. J, M. Kurzewski, M. Drozdzik, P.K. Chu, E. Borowiak-Palen, Synthesis, dispersion, and cytocompatibility of graphene oxide and reduced graphene oxide, Colloids Surf B: Biointerfaces 89 (2012) 79-85, doi: https://doi.org/10.1016/j.colsurfb.2011.08.026.

    Article  CAS  PubMed  Google Scholar 

  94. Kan W, Jing R, Hua S, Zhang J, Yan W, Guo S, Cui D (2011) Biocompatibility of graphene oxide. Nanoscale Res Lett 6:8–15. https://doi.org/10.1007/s11671-010-9751-6

    Article  CAS  Google Scholar 

  95. Sasidharan A, Panchakarla LS, Chandran P, Menon D, Nair S, Rao CN, Koyakutty M (2011) Differential nano-bio interactions and toxicity effects of pristine versus functionalized graphene. Nanoscale. 3:2461–2464. https://doi.org/10.1039/c1nr10172b

    Article  CAS  PubMed  Google Scholar 

  96. Duch MC, Budinger GRS, Yu TL, Soberanes S, Urich D, Chiarella SE, Campochiaro LA, Gonzalez A, Chandel NS, Hersam MC (2011) Minimizing oxidation and stable nanoscale dispersion improves the biocompatibility of graphene in the lung. Nano Lett 11:5201–5207. https://doi.org/10.1021/nl202515a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Chowdhury SM, Kanakia S, Toussaint JD, Frame MD, Dewar AM, Shroyer KR, Moore W, Sitharaman B (2013) In vitro hematological and in vivo vasoactivity assessment of dextran functionalized graphene. Sci Rep 3:2584. https://doi.org/10.1038/srep02584

    Article  PubMed  PubMed Central  Google Scholar 

  98. Costa PM, Bourgognon M, Wang TW, Al-Jamal KT (2016) Functionalized carbon nanotubes: from intracellular uptake and cell-related toxicity to systemic brain delivery. J Control Release 241:200–219. https://doi.org/10.1016/j.jconrel.2016.09.033

    Article  CAS  PubMed  Google Scholar 

  99. Wei Q, Tian L, An W, Qiang W, Liu J, Jiang C, Yang J, Bing T, Zhang Y, Xie K (2017) Curing the toxicity of Multi-Walled carbon nanotubes through native small-molecule drugs. Sci Rep 7:2815–2828. https://doi.org/10.1038/s41598-017-02770-5

    Article  CAS  Google Scholar 

  100. Zhu S, Luo F, Tu X, Chen WC, Zhu B, Wang GX (2017) Developmental toxicity of oxidized multi-walled carbon nanotubes on Artemia salina cysts and larvae: uptake, accumulation, excretion and toxic responses. Environ Pollut 229:679–687. https://doi.org/10.1016/j.envpol.2017.07.020

    Article  CAS  PubMed  Google Scholar 

  101. Sinha M, Gollavelli G, Ling YC (2016) Exploring the photothermal hot spots of graphene in the first and second biological window to inactivate cancer cells and pathogens. RSC Adv 6:63859–63866. https://doi.org/10.1039/c6ra10685d

    Article  CAS  Google Scholar 

  102. Akhavan O, Ghaderi E, Rahimi K (2012) Adverse effects of graphene incorporated in TiO2 photocatalyst on minuscule animals under solar light irradiation. J Mater Chem 22:23260–23266. https://doi.org/10.1039/c2jm35228a

    Article  CAS  Google Scholar 

  103. Khodaei R, Ahmady A, Khoshfetrat SM, Tavangar SM, Omidfar K (2019) Voltammetric immunosensor for E-cadherin promoter DNA methylation using a Fe3O4-citric acid nanocomposite and a screen-printed carbon electrode modified with poly (vinyl alcohol) and reduced graphene oxide. Microchim Acta 186:170. https://doi.org/10.1007/s00604-019-3234-y

    Article  CAS  Google Scholar 

  104. Muthukumaran P, Sumathi C, Wilson J, Ravi G (2016) Enzymeless biosensor based on β-NiS@rGO/Au nanocomposites for simultaneous detection of ascorbic acid, epinephrine and uric acid. RSC Adv 6:96467–96478. https://doi.org/10.1039/c6ra19921f

    Article  CAS  Google Scholar 

  105. Mao LF, Wang J, Li L, Ning H, Hu C (2017) Modeling of spectral shift in Raman spectroscopy, photo- and electro-luminescence induced by electric field tuning of graphene related electronic devices. Carbon. 119:446–452. https://doi.org/10.1016/j.carbon.2017.04.070

    Article  CAS  Google Scholar 

  106. Hossain NM, Ashenafi E, Hossen M, Es-Sakhi A, Chowdhury MH Multilayer graphene nanoribbon based BioFET sensor design. In: 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS). IEEE, pp 1402–1405

  107. Zheng C, Huang L, Zhang H, Sun Z, Zhang Z, Zhang GJ (2015) Fabrication of ultrasensitive Field-Effect transistor DNA biosensors by a directional transfer technique based on CVD-Grown graphene. ACS Appl Mater Interfaces 7:16953–16959. https://doi.org/10.1021/acsami.5b03941

    Article  CAS  PubMed  Google Scholar 

  108. Becheru D, Vlăsceanu G, Banciu A, Vasile E, Ioniţă M, Burns J (2018) Optical graphene-based biosensor for nucleic acid detection; influence of graphene functionalization and ionic strength. Int J Mol Sci 19:3230. https://doi.org/10.3390/ijms19103230

    Article  CAS  PubMed Central  Google Scholar 

  109. Ma H, Li C, Zhang M, Hong JD, Shi G (2017) Graphene oxide induced hydrothermal carbonization of egg proteins for high-performance supercapacitors. J Mater Chem A 5:17040–17047. https://doi.org/10.1039/c7ta04771a

    Article  CAS  Google Scholar 

  110. Luong JHT, Glennon JD, Gedanken A, Vashist SK (2017) Achievement and assessment of direct electron transfer of glucose oxidase in electrochemical biosensing using carbon nanotubes, graphene, and their nanocomposites. Microchim Acta 184:369–388. https://doi.org/10.1007/s00604-016-2049-3

    Article  CAS  Google Scholar 

  111. Pan L, Kuo S, Lin T, Lin C, Fang P, Yang H (2017) An electrochemical biosensor to simultaneously detect VEGF and PSA for early prostate cancer diagnosis based on graphene oxide/ssDNA/PLLA nanoparticles. Biosens Bioelectron 89:598–605. https://doi.org/10.1016/j.bios.2016.01.077

    Article  CAS  PubMed  Google Scholar 

  112. Li Z, Tian L, Liu J, Qi W, Wu Q, Wang H, Ali MC, Wu W, Qiu H (2017) Graphene Oxide/Ag nanoparticles cooperated with simvastatin as a high sensitive X-Ray computed tomography imaging agent for diagnosis of renal dysfunctions. Adv Healthc Mater 6:1700413. https://doi.org/10.1002/adhm.201700413

    Article  CAS  Google Scholar 

  113. Chen Y, Vedala H, Kotchey GP, Audfray A, Cecioni S, Imberty A, Vidal S, Star A (2012) Electronic detection of lectins using Carbohydrate-Functionalized nanostructures: Graphene versus carbon nanotubes. ACS Nano 6:760–770. https://doi.org/10.1021/nn2042384

    Article  CAS  PubMed  Google Scholar 

  114. Siddique S, Iqbal MZ, Mukhtar H (2017) Cholesterol immobilization on chemical vapor deposition grown graphene nanosheets for biosensors and bioFETs with enhanced electrical performance. Sensor Actuat B-Chem 253:559–565. https://doi.org/10.1016/j.snb.2017.06.170

    Article  CAS  Google Scholar 

  115. Phan TKL, Wu D, Ye C, Li X, Vu TT, Wei Q, Fu L, Yu A, Li L, Lin C (2018) Hall effect biosensors with ultraclean graphene film for improved sensitivity of label-free DNA detection. Biosens Bioelectron 99:85–91. https://doi.org/10.1016/j.bios.2017.07.045

    Article  CAS  Google Scholar 

  116. Kymakis E, Petridis C, Anthopoulos TD, Stratakis E (2014) Laser-Assisted reduction of graphene oxide for flexible, Large-Area optoelectronics. Ieee J Sel Top Quant 20:6000410. https://doi.org/10.1109/JSTQE.2013.2273414

    Article  CAS  Google Scholar 

  117. Lin Y, Jenkins KA, Valdes-Garcia A, Small JP, Farmer DB, Avouris P (2009) Operation of graphene transistors at gigahertz frequencies. Nano Lett 9:422–426. https://doi.org/10.1021/nl803316h

    Article  CAS  PubMed  Google Scholar 

  118. Oh J, Lee JS, Jun J, Kim SG, Jang J (2017) Ultrasensitive and selective organic FET-type nonenzymatic dopamine sensor based on platinum Nanoparticles-Decorated reduced graphene oxide. ACS Appl Mater Interfaces 9:39526–39533. https://doi.org/10.1021/acsami.7b15093

    Article  CAS  PubMed  Google Scholar 

  119. Qi S, Zhao B, Tang H, Jiang X (2015) Determination of ascorbic acid, dopamine, and uric acid by a novel electrochemical sensor based on pristine graphene. Electrochim Acta 161:395–402. https://doi.org/10.1016/j.electacta.2015.02.116

    Article  CAS  Google Scholar 

  120. Huang J, Tian J, Zhao Y, Zhao S (2015) Ag/Au nanoparticles coated graphene electrochemical sensor for ultrasensitive analysis of carcinoembryonic antigen in clinical immunoassay. Sensor Actuat B-Chem 206:570–576. https://doi.org/10.1016/j.snb.2014.09.119

    Article  CAS  Google Scholar 

  121. Li Y, Han J, Chen R, Ren X, Wei Q (2015) Label electrochemical immunosensor for prostate-specific antigen based on graphene and silver hybridized mesoporous silica. Anal Biochem 469:76–82. https://doi.org/10.1016/j.ab.2014.09.022

    Article  CAS  PubMed  Google Scholar 

  122. Lin C, Phan TKL, Chen T, Liu K, Chen C, Wei K, Li L (2013) Label-free electrical detection of dna hybridization on graphene using hall effect measurements: revisiting the sensing mechanism. Adv Funct Mater 23:2301–2307. https://doi.org/10.1002/adfm.201202672

    Article  CAS  Google Scholar 

  123. Jeong H, Nguyen DM, Lee MS, Kim HG, Ko SC, Kwac LK (2018) N-doped graphene-carbon nanotube hybrid networks attaching with gold nanoparticles for glucose non-enzymatic sensor. Mater Sci Eng C 90:38–45. https://doi.org/10.1016/j.msec.2018.04.039

    Article  CAS  Google Scholar 

  124. Huang Y, Tan J, Cui L, Zhou Z, Zhou S, Zhang Z, Zheng R, Xue Y, Zhang M, Li S, Zhu N, Liang J, Li G, Zhong L, Zhao Y (2018) Graphene and Au NPs co-mediated enzymatic silver deposition for the ultrasensitive electrochemical detection of cholesterol. Biosens Bioelectron 102:560–567. https://doi.org/10.1016/j.bios.2017.11.037

    Article  CAS  PubMed  Google Scholar 

  125. Benvidi A, Saucedo NM, Ramnani P, Villarreal C, Mulchandani A, Tezerjani MD, Jahanbani S (2018) Electro-oxidized monolayer CVD graphene film transducer for ultrasensitive impedimetric DNA biosensor. Electroanal. 30:1783–1792. https://doi.org/10.1002/elan.201700654

    Article  CAS  Google Scholar 

  126. Zhang H, Zhang B, Chen A, Qin Y (2017) Controllable n-Fe2O3@graphene nanomaterials by ALD applied in an aptasensor with enhanced electrochemical performance for thrombin detection. Dalton Trans 46:7434–7440. https://doi.org/10.1039/c7dt01184a

    Article  CAS  PubMed  Google Scholar 

  127. Ahour F, Ahsani MK (2016) An electrochemical label-free and sensitive thrombin aptasensor based on graphene oxide modified pencil graphite electrode. Biosens Bioelectron 86:764–769. https://doi.org/10.1016/j.bios.2016.07.053

    Article  CAS  PubMed  Google Scholar 

  128. He S, He P, Zhang X, Zhang X, Liu K, Jia L, Dong F (2018) Poly(glycine)/graphene oxide modified glassy carbon electrode: Preparation, characterization and simultaneous electrochemical determination of dopamine, uric acid, guanine and adenine. Anal Chim Acta 1031:75–82. https://doi.org/10.1016/j.aca.2018.06.020

    Article  CAS  PubMed  Google Scholar 

  129. Chang YL, Park KS, Yun KJ, Park HG (2016) A label-free fluorescent assay for deoxyribonuclease I activity based on DNA-templated silver nanocluster/graphene oxide nanocomposite. Biosens Bioelectron 93:293–297. https://doi.org/10.1016/j.bios.2016.08.073

    Article  CAS  Google Scholar 

  130. Liu Z, Su X (2017) A novel fluorescent DNA sensor for ultrasensitive detection of Helicobacter pylori. Biosens Bioelectron 87:66–72. https://doi.org/10.1016/j.bios.2016.07.061

    Article  CAS  PubMed  Google Scholar 

  131. Fang BY, Yao MH, Wang CY, Wang CY, Zhao YD, Chen F (2016) Detection of adenosine triphosphate in HeLa cell using capillary electrophoresis-laser induced fluorescence detection based on aptamer and graphene oxide. Colloids Surf B: Biointerfaces 140:233–238. https://doi.org/10.1016/j.colsurfb.2015.12.043

    Article  CAS  PubMed  Google Scholar 

  132. Weng X, Neethirajan S (2016) A microfluidic biosensor using graphene oxide and aptamer-functionalized quantum dots for peanut allergen detection. Biosens Bioelectron 85:649–656. https://doi.org/10.1016/j.bios.2016.05.072

    Article  CAS  PubMed  Google Scholar 

  133. Zhang S, Wang K, Li KB, Shi W, Jia WP, Chen X, Sun T, Han DM (2017) A DNA-stabilized silver nanoclusters/graphene oxide-based platform for the sensitive detection of DNA through hybridization chain reaction. Biosens Bioelectron 91:374–379. https://doi.org/10.1016/j.bios.2016.12.060

    Article  CAS  PubMed  Google Scholar 

  134. Qaddare SH, Salimi A (2016) Amplified fluorescent sensing of DNA using luminescent carbon dots and AuNPs/GO as a sensing Platform: A novel coupling of FRET and DNA hybridization for homogeneous HIV-1 gene detection at femtomolar level. Biosens Bioelectron 89:773–780. https://doi.org/10.1016/j.bios.2016.10.033

    Article  CAS  PubMed  Google Scholar 

  135. Xue S, Yi H, Yuan Y, Jing P, Xu WJ (2015) A label-free and sensitive electrochemical aptasensor for thrombin based on the direct electron transfer of hemin and hemin@rGO nanosheets as signal probe. Anal Methods 7:8771–8777. https://doi.org/10.1039/c5ay02136g

    Article  CAS  Google Scholar 

  136. Kumar S, Kumar S, Srivastava S, Yadav BK, Lee SH, Sharma JG, Doval DC, Malhotra BD (2015) Reduced graphene oxide modified smart conducting paper for cancer biosensor. Biosens Bioelectron 73:114–122. https://doi.org/10.1016/j.bios.2015.05.040

    Article  CAS  PubMed  Google Scholar 

  137. Sridevi S, Vasu KS, Sampath S, Asokan S, Sood AK (2016) Optical detection of glucose and glycated hemoglobin using etched fiber Bragg gratings coated with functionalized reduced graphene oxide. J Biophotonics 9:760–769. https://doi.org/10.1002/jbio.201580156

    Article  CAS  PubMed  Google Scholar 

  138. Zou HL, Li BL, Luo HQ, Li NB (2015) A novel electrochemical biosensor based on hemin functionalized graphene oxide sheets for simultaneous determination of ascorbic acid, dopamine and uric acid. Sensor Actuat B-Chem 207:535–541. https://doi.org/10.1016/j.snb.2014.10.121

    Article  CAS  Google Scholar 

  139. Shoja Y, Kermanpur A, Karimzadeh F (2018) Diagnosis of EGFR exon21 L858R point mutation as lung cancer biomarker by electrochemical nanoparticles modified pencil graphite electrode. Biosens Bioelectron 113:108–115. https://doi.org/10.1016/j.bios.2018.04.013

    Article  CAS  PubMed  Google Scholar 

  140. Wang B, He J, Liu F, Ding L (2017) Rapid synthesis of Cu2O/CuO/rGO with enhanced sensitivity for ascorbic acid biosensing. J Alloys Compd 693:902–908. https://doi.org/10.1016/j.jallcom.2016.09.291

    Article  CAS  Google Scholar 

  141. Wang M, Ma J, Chang Q, Fan X, Zhang G, Zhang F, Peng W, Li Y (2017) Fabrication of a novel ZnO−CoO/rGO nanocomposite for nonenzymatic detection of glucose and hydrogen peroxide. Ceram Int 44:5250–5256. https://doi.org/10.1016/j.ceramint.2017.12.136

    Article  CAS  Google Scholar 

  142. Hassanzadeh J, Khataee A (2017) Ultrasensitive chemiluminescent biosensor for the detection of cholesterol based on synergetic peroxidase-like activity of MoS2 and graphene quantum dots. Talanta. 178:992–1000. https://doi.org/10.1016/j.talanta.2017.08.107

    Article  CAS  PubMed  Google Scholar 

  143. Liu H, Li N, Zhang H, Zhang F, Su X (2018) A simple and convenient fluorescent strategy for the highly sensitive detection of dopamine and ascorbic acid based on graphene quantum dots. Talanta. 189:190–195. https://doi.org/10.1016/j.talanta.2018.05.014

    Article  CAS  PubMed  Google Scholar 

  144. Khonsari YN, Sun S (2018) Electrochemiluminescent aptasensor for thrombin using nitrogen-doped graphene quantum dots. Microchim Acta 185:430–439. https://doi.org/10.1007/s00604-018-2942-z

    Article  CAS  Google Scholar 

  145. Xiang Q, Huang J, Huang H, Mao W, Ye Z (2018) A label-free electrochemical platform for the highly sensitive detection of hepatitis B virus DNA using graphene quantum dots. RSC Adv 8:1820–1825. https://doi.org/10.1039/c7ra11945c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Shehab M, Ebrahim S, Soliman M, Lumin J (2017) Graphene quantum dots prepared from glucose as optical sensor for glucose. J Lumin 184:110–116. https://doi.org/10.1016/j.jlumin.2016.12.006

    Article  CAS  Google Scholar 

  147. Li RS, Yuan B, Liu JH, Liu ML, Gao PF, Li YF, Li M, Huang CZ (2017) Boron and nitrogen co-doped single-layered graphene quantum dots: A high-affinity platform for visualizing the dynamic invasions of HIV DNA into living cells through fluorescence resonance energy transfer. J Mater Chem B 5:8719–8724. https://doi.org/10.1039/C7TB02356A

    Article  CAS  PubMed  Google Scholar 

  148. Li R, Liu L, Zhu H, Li Z (2018) Synthesis of gold-palladium nanowaxberries/dodecylamine-functionalized graphene quantum dots-graphene micro-aerogel for voltammetric determination of peanut allergen Ara h 1. Anal Chim Acta 1008:38–47. https://doi.org/10.1016/j.aca.2018.01.031

    Article  CAS  PubMed  Google Scholar 

  149. Ye H, Lu Q, Duan N, Wang Z (2019) GO-amplified fluorescence polarization assay for high-sensitivity detection of aflatoxin B1 with low dosage aptamer probe. Anal Bioanal Chem 411:1107–1115. https://doi.org/10.1007/s00216-018-1540-6

    Article  CAS  PubMed  Google Scholar 

  150. Jia Y, Wu F, Liu P, Zhou G, Yu B, Lou X, Xia F (2019) A label-free fluorescent aptasensor for the detection of Aflatoxin B1 in food samples using AIE gens and graphene oxide. Talanta. 198:71–77. https://doi.org/10.1016/j.talanta.2019.01.078

    Article  CAS  PubMed  Google Scholar 

  151. Liu H, Na W, Liu Z, Chen X, Su X (2017) A novel turn-on fluorescent strategy for sensing ascorbic acid using graphene quantum dots as fluorescent probe. Biosens Bioelectron 92:229–233. https://doi.org/10.1016/j.bios.2017.02.005

    Article  CAS  PubMed  Google Scholar 

  152. Gao L, Ju L, Cui H (2017) Chemiluminescence and fluorescence Dual-Signal graphene quantum dots and their application in pesticides sensing array. J Mater Chem C 5:7753–7758. https://doi.org/10.1039/C7TC01658A

    Article  CAS  Google Scholar 

  153. Tao Y, Lin Y, Ren J, Qu X (2013) Self-assembled, functionalized graphene and DNA as a universal platform for colorimetric assays. Biomaterials. 34:4810–4817. https://doi.org/10.1016/j.biomaterials.2013.03.039

    Article  CAS  PubMed  Google Scholar 

  154. Guo Y, Deng L, Li J, Guo S, Wang E, Dong S (2011) Hemin-graphene hybrid nanosheets with intrinsic peroxidase-like activity for label-free colorimetric detection of single-nucleotide polymorphism. ACS Nano 5:1282–1290. https://doi.org/10.1021/nn1029586

    Article  CAS  PubMed  Google Scholar 

  155. Zhu X, Zhang H, Feng C, Ye Z, Li G (2014) A dual-colorimetric signal strategy for DNA detection based on graphene and DNAzyme. RSC Adv 4:2421–2426. https://doi.org/10.1039/C3RA44033H

    Article  CAS  Google Scholar 

  156. Lee J, Kim Y, Lee S, Yoon S, Kima W (2019) Graphene oxide-based NET strategy for enhanced colorimetric sensing of miRNA. Sensors Actuators B Chem 282:861–867. https://doi.org/10.1016/j.snb.2018.11.149

    Article  CAS  Google Scholar 

  157. Li C, Yang Y, Zhang B, Chen G, Wang Z, Li G (2014) Conjugation of graphene oxide with DNA-modified gold nanoparticles to develop a novel colorimetric sensing platform. Part Part Syst Charact 31:201–208. https://doi.org/10.1002/ppsc.201300200

    Article  CAS  Google Scholar 

  158. Liu H, Wu Y, Wang F, Liu Z (2014) Molecular imaging of integrin αvβ6 expression in living subjects. Am J Nucl Med Mol Imaging 4:333

    PubMed  PubMed Central  Google Scholar 

  159. Nolting DD, Nickels ML, Guo N, Pham W (2012) Molecular imaging probe development: A chemistry perspective. Am J Nucl Med Mol Imaging 2:273–306

    PubMed  PubMed Central  Google Scholar 

  160. Wella SA, Sawada H, Kawaguchi N, Muttaqien F, Inagaki K, Hamada I, Morikawa Y, Hamamoto Y (2017) Hybrid image potential states in molecular overlayers on graphene. Phys Rev Mater 1. https://doi.org/10.1103/PhysRevMaterials.1.061001

  161. Elbourne A, McLean B, Voitchovsky K, Warr GG, Atkin R (2016) Molecular resolution in situ imaging of spontaneous graphene exfoliation. J Phys Chem Lett 7:3118–3122. https://doi.org/10.1021/acs.jpclett.6b01323

    Article  CAS  PubMed  Google Scholar 

  162. Garg B, Sung C, Ling Y (2015) Graphene-based nanomaterials as molecular imaging agents. Wires Nanomed Nanobi 7:737–758. https://doi.org/10.1002/wnan.1342

    Article  CAS  Google Scholar 

  163. Liu Y, Huang W, Gong T, Su Y, Zhang H, He Y, Liu Z, Yu B (2017) Ultra-sensitive near-infrared graphene photodetectors with nanopillar antennas. Nanoscale. 9:17459–17464. https://doi.org/10.1039/c7nr06009b

    Article  CAS  PubMed  Google Scholar 

  164. Nurunnabi M, Khatun Z, Reeck GR, Lee DY, Lee YK (2013) Near infra-red photoluminescent graphene nanoparticles greatly expand their use in noninvasive biomedical imaging. Chem Commun 49:5079–5081. https://doi.org/10.1039/C3CC42334D

    Article  CAS  Google Scholar 

  165. Zhang D, Wen L, Huang R, Wang H, Hu X, Xing D (2018) Mitochondrial specific photodynamic therapy by rare-earth nanoparticles mediated near-infrared graphene quantum dots. Biomaterials. 153:14–26. https://doi.org/10.1016/j.biomaterials.2017.10.034

    Article  CAS  PubMed  Google Scholar 

  166. Zhang P, Song T, Wang T, Zeng H (2017) Fabrication of a non-semiconductor photocatalytic system using dendrite-like plasmonic CuNi bimetal combined with a reduced graphene oxide nanosheet for near-infrared photocatalytic H-2 evolution. J Mater Chem A 5:22772–22781. https://doi.org/10.1039/c7ta06625b

    Article  CAS  Google Scholar 

  167. Li Q, Hong L, Li H, Liu C (2017) Graphene oxide-fullerene C-60 (GO-C-60) hybrid for photodynamic and photothermal therapy triggered by near-infrared light. Biosens Bioelectron 89:477–482. https://doi.org/10.1016/j.bios.2016.03.072

    Article  CAS  PubMed  Google Scholar 

  168. Chen M, He Y, Chen X, Wang J (2013) Quantum-Dot-Conjugated graphene as a probe for simultaneous Cancer-Targeted fluorescent imaging, tracking, and monitoring drug delivery. Bioconjug Chem 24:387–397. https://doi.org/10.1021/bc3004809

    Article  CAS  PubMed  Google Scholar 

  169. Chen M, Liu J, Hu B, Chen M, Wang J (2011) Conjugation of quantum dots with graphene for fluorescence imaging of live cells. Analyst. 136:4277–4283. https://doi.org/10.1039/c1an15474e

    Article  CAS  PubMed  Google Scholar 

  170. Dong H, Li Y, Yu J, Song Y, Cai X, Liu J, Zhang J, Ewing RC, Shi D (2013) A Versatile Multicomponent Assembly via -cyclodextrin HostGuest Chemistry on Graphene for Biomedical Applications. Small. 9:446–456. https://doi.org/10.1002/smll.201201003

    Article  CAS  PubMed  Google Scholar 

  171. Feng D, Song Y, Shi W, Li X, Ma H (2013) Distinguishing Folate-Receptor-Positive cells from Folate-Receptor-Negative cells using a fluorescence Off-On nanoprobe. Anal Chem 85:6530–6535. https://doi.org/10.1021/ac401377n

    Article  CAS  PubMed  Google Scholar 

  172. Gao Y, Zou X, Zhao JX, Li Y, Su X (2013) Graphene oxide-based magnetic fluorescent hybrids for drug delivery and cellular imaging. Colloid Surface B 112:128–133. https://doi.org/10.1016/j.colsurfb.2013.07.020

    Article  CAS  Google Scholar 

  173. Hu S, Chen Y, Hung W, Chen I, Chen S (2012) Quantum-Dot-Tagged reduced graphene oxide nanocomposites for bright fluorescence bioimaging and photothermal therapy monitored in situ. Adv Mater 24:1748–1754. https://doi.org/10.1002/adma.201104070

    Article  CAS  PubMed  Google Scholar 

  174. Nafiujjaman M, Nurunnabi M, Kang S, Reeck GR, Khan HA, Lee Y (2015) Ternary graphene quantum dot-polydopamine-Mn3O4 nanoparticles for optical imaging guided photodynamic therapy and T-1-weighted magnetic resonance imaging. J Mater Chem B 3:5815–5823. https://doi.org/10.1039/c5tb00479a

    Article  CAS  PubMed  Google Scholar 

  175. Nurunnabi M, Khatun Z, Nafiujjaman M, Lee D, Lee Y (2013) Surface coating of graphene quantum dots using Mussel-Inspired polydopamine for biomedical optical imaging. ACS Appl Mater Interfaces 5:8246–8253. https://doi.org/10.1021/am4023863

    Article  CAS  PubMed  Google Scholar 

  176. Rong P, Yang K, Srivastan A, Kiesewetter DO, Yue X, Wang F, Nie L, Bhirde A, Wang Z, Liu Z, Niu G, Wang W, Chen X (2014) Photosensitizer loaded Nano-Graphene for multimodality imaging guided tumor photodynamic therapy. Theranostics. 4:229–239. https://doi.org/10.7150/thno.8070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Sun Z, Huang P, Tong G, Lin J, Jin A, Rong P, Zhu L, Nie L, Niu G, Cao F, Chen X (2013) VEGF-loaded graphene oxide as theranostics for multi-modality imaging-monitored targeting therapeutic angiogenesis of ischemic muscle. Nanoscale. 5:6857–6866. https://doi.org/10.1039/c3nr01573d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Wang Y, Wang H, Liu D, Song S, Wang X, Zhang H (2013) Graphene oxide covalently grafted upconversion nanoparticles for combined NIR mediated imaging and photothermal/photodynamic cancer therapy. Biomaterials. 34:7715–7724. https://doi.org/10.1016/j.biomaterials.2013.06.045

    Article  CAS  PubMed  Google Scholar 

  179. Wu X, Tian F, Wang W, Chen J, Wu M, Zhao JX (2013) Fabrication of highly fluorescent graphene quantum dots using L-glutamic acid for in vitro/in vivo imaging and sensing. J Mater Chem C 1:4676–4684. https://doi.org/10.1039/c3tc30820k

    Article  CAS  Google Scholar 

  180. Hong H, Yang K, Zhang Y, Engle JW, Feng L, Yang Y, Nayak TR, Goel S, Bean J, Theuer CP, Barnhart TE, Liu Z, Cai W (2012) In vivo targeting and imaging of tumor vasculature with radiolabeled, Antibody-Conjugated nanographene. ACS Nano 6:2361–2370. https://doi.org/10.1021/nn204625e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Hong H, Zhang Y, Engle JW, Nayak TR, Theuer CP, Nickles RJ, Barnhart TE, Cai W (2012) In vivo targeting and positron emission tomography imaging of tumor vasculature with Ga-66-labeled nano-graphene. Biomaterials. 33:4147–4156. https://doi.org/10.1016/j.biomaterials.2012.02.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Shi S, Yang K, Hong H, Valdovinos HF, Nayak TR, Zhang Y, Theuer CP, Barnhart TE, Liu Z, Cai W (2013) Tumor vasculature targeting and imaging in living mice with reduced graphene oxide. Biomaterials. 34:3002–3009. https://doi.org/10.1016/j.biomaterials.2013.01.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Feng Q, Li S, Ma W, Fan H, Wan X, Lei Y, Chen Z, Yang J, Qin B (2018) Synthesis and characterization of Fe3O4/ZnO-GO nanocomposites with improved photocatalytic degradation methyl orange under visible light irradiation. J Alloys Compd 737:197–206. https://doi.org/10.1016/j.jallcom.2017.12.070

    Article  CAS  Google Scholar 

  184. Gizzatov A, Keshishian V, Guven A, Dimiev AM, Qu F, Muthupillai R, Decuzzi P, Bryant RG, Tour JM, Wilson LJ (2014) Enhanced MRI relaxivity of aquated Gd3+ ions by carboxyphenylated water-dispersed graphene nanoribbons. Nanoscale. 6:3059–3063. https://doi.org/10.1039/C3NR06026H

    Article  CAS  PubMed  Google Scholar 

  185. Guo L, Shi H, Wu H, Zhang Y, Wang X, Wu D, An L, Yang S (2016) Prostate cancer targeted multifunctionalized graphene oxide for magnetic resonance imaging and drug delivery. Carbon. 107:87–99. https://doi.org/10.1016/j.carbon.2016.05.054

    Article  CAS  Google Scholar 

  186. Romero-Aburto R, Narayanan TN, Nagaoka Y, Hasumura T, Mitcham TM, Fukuda T, Cox PJ, Bouchard RR, Maekawa T, Kumar DS, Torti SV, Mani SA, Ajayan PM (2013) Fluorinated graphene oxide; A new multimodal material for biological applications. Adv Mater 25:5632–5637. https://doi.org/10.1002/adma201301804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Yang K, Hu L, Ma X, Ye S, Cheng L, Shi X, Li C, Li Y, Liu Z (2012) Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles. Adv Mater 24:1868–1872. https://doi.org/10.1002/adma.201104964

    Article  CAS  PubMed  Google Scholar 

  188. Yang X, Zhang X, Ma Y, Huang Y, Wang Y, Chen Y (2009) Superparamagnetic graphene oxide-Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. J Mater Chem 19:2710–2714. https://doi.org/10.1039/b821416f

    Article  CAS  Google Scholar 

  189. Zhang M, Cao Y, Chong Y, Ma Y, Zhang H, Deng Z, Hu C, Zhang Z (2013) Graphene oxide based theranostic platform for T-1-Weighted magnetic resonance imaging and drug delivery. ACS Appl Mater Interfaces 5:13325–13332. https://doi.org/10.1021/am404292e

    Article  CAS  PubMed  Google Scholar 

  190. Cao S, Wang T, Sun Q, Hu B, Levy U, Yu W (2017) Graphene on meta-surface for super-resolution optical imaging with a sub-10 nm resolution. Opt Express 25:14494–14503. https://doi.org/10.1364/OE.25.014494

    Article  CAS  PubMed  Google Scholar 

  191. Khadir S, Bon P, Vignaud D, Galopin E, McEvoy N, McCloskey D, Monneret S, Baffou G (2017) Optical imaging and characterization of graphene and other 2D materials using quantitative phase microscopy. ACS Photonics 4:3130–3139. https://doi.org/10.1021/acsphotonics.7b00845

    Article  CAS  Google Scholar 

  192. Yan X, Song Y, Zhu C, Song J, Du D, Su X, Lin Y (2016) Graphene quantum Dot-MnO2 nanosheet based optical sensing platform: A sensitive fluorescence "turn Off-On" nanosensor for glutathione detection and intracellular imaging. ACS Appl Mater Interfaces 8:21990–21996. https://doi.org/10.1021/acsami.6b05465

    Article  CAS  PubMed  Google Scholar 

  193. Xu G, Wang J, Si G, Wang M, Cheng H, Chen B, Zhou S (2017) Preparation, photoluminescence properties and application for invivo tumor imaging of curcumin derivative-functionalized graphene oxide composite. Dyes Pigments 141:470–478. https://doi.org/10.1016/j.dyepig.2017.02.046

    Article  CAS  Google Scholar 

  194. Kang S, Lee J, Ryu S, Kwon Y, Kim K, Jeong DH, Paik SR, Kim B (2017) Gold Nanoparticle/Graphene oxide hybrid sheets attached on mesenchymal stem cells for effective photothermal cancer therapy. Chem Mater 29:3461–3476. https://doi.org/10.1021/acs.chemmater.6b05164

    Article  CAS  Google Scholar 

  195. Yao J, Li L, Li P, Yang M (2017) Quantum dots: From fluorescence to chemiluminescence, bioluminescence, electrochemiluminescence, and electrochemistry. Nanoscale. 9:13364–13383. https://doi.org/10.1039/c7nr05233b

    Article  CAS  PubMed  Google Scholar 

  196. Yao J, Yang M, Liu Y, Duan Y (2015) Fluorescent CdS quantum dots: Synthesis, characterization, mechanism and interaction with gold nanoparticles. J Nanosci Nanotechnol 15:3720–3727. https://doi.org/10.1166/jnn.2015.9522

    Article  CAS  PubMed  Google Scholar 

  197. Lopci E, Grassi I, Chiti A, Nanni C, Cicoria G, Toschi L, Fonti C, Lodi F, Mattioli S, Fanti S (2014) PET radiopharmaceuticals for imaging of tumor hypoxia: A review of the evidence. Am J Nucl Med Mol Imaging 4:365–384

    PubMed  PubMed Central  Google Scholar 

  198. Narayanan TN, Gupta BK, Vithayathil SA, Aburto RR, Mani SA, Taha-Tijerina J, Xie B, Kaipparettu BA, Torti SV, Ajayan PM (2012) Hybrid 2D nanomaterials as Dual-Mode contrast agents in cellular imaging. Adv Mater 24:2992–2998. https://doi.org/10.1002/adma.201200706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Zhao X, Li X, Zhang S, Long J, Huang Y, Wang R, Sha J (2017) A three-dimensional sponge of graphene nanoribbons crosslinked by Fe3O4 nanoparticles for Li+ storage. J Mater Chem A 5:23592–23599. https://doi.org/10.1039/c7ta07874a

    Article  CAS  Google Scholar 

  200. Wang G, Chen G, Wei Z, Dong X, Qi M (2013) Multifunctional Fe3O4/graphene oxide nanocomposites for magnetic resonance imaging and drug delivery. Mater Chem Phys 141:997–1004. https://doi.org/10.1016/j.matchemphys.2013.06.054

    Article  CAS  Google Scholar 

  201. Meng J, Chen X, Tian Y, Li Z, Zheng Q (2017) Nanoscale Metal-Organic frames decorated with graphene oxide for magnetic resonance imaging-guided photothermal therapy. Chem-Eur J 23:17521–17530. https://doi.org/10.1002/chem.201702573

    Article  CAS  PubMed  Google Scholar 

  202. Xie B, Yi J, Peng J, Zhang X, Lei L, Zhao D, Lei Z, Nie H (2017) Characterization of synergistic anti-tumor effects of doxorubicin and p53 via graphene oxide-polyethyleneimine nanocarriers. J Mater Sci Technol 33:807–814. https://doi.org/10.1016/j.jmst.2017.05.005

    Article  Google Scholar 

  203. Kim H, Kim WJ (2014) Photothermally controlled gene delivery by reduced graphene Oxide-Polyethylenimine nanocomposite. Small. 10:117–126. https://doi.org/10.1002/smll.201202636

    Article  CAS  PubMed  Google Scholar 

  204. Zhou X, Laroche F, Lamers GEM, Torraca V, Voskamp P, Lu T, Chu F, Spaink HP, Abrahams JP, Liu Z (2012) Ultra-small graphene oxide functionalized with polyethylenimine (PEI) for very efficient gene delivery in cell and zebrafish embryos. Nano Res 5:703–709. https://doi.org/10.1007/s12274-012-0254-x

    Article  CAS  Google Scholar 

  205. Yin D, Li Y, Lin H, Guo B, Du Y, Li X, Jia H, Zhao X, Tang J, Zhang L (2013) Functional graphene oxide as a plasmid-based Stat3 siRNA carrier inhibits mouse malignant melanoma growth in vivo. Nanotechnology. 24:105102. https://doi.org/10.1088/0957-4484/24/10/105102

    Article  CAS  PubMed  Google Scholar 

  206. Hsieh T, Huang W, Kang Y, Chu C, Liao W, Chen Y, Chen S (2016) Neurotensin-Conjugated reduced graphene oxide with Multi-Stage Near-Infrared-Triggered synergic targeted neuron gene transfection in vitro and in vivo for neurodegenerative disease therapy. Adv Healthc Mater 5:3016–3026. https://doi.org/10.1002/adhm.201600647

    Article  CAS  PubMed  Google Scholar 

  207. Tripathi SK, Goyal R, Gupta KC, Kumar P (2013) Functionalized graphene oxide mediated nucleic acid delivery. Carbon. 51:224–235. https://doi.org/10.1016/j.carbon.2012.08.047

    Article  CAS  Google Scholar 

  208. Joo J, Kwon EJ, Kang J, Skalak M, Anglin EJ, Mann AP, Ruoslahti E, Bhatia SN, Sailor MJ (2016) Porous silicon-graphene oxide core-shell nanoparticles for targeted delivery of siRNA to the injured brain. Nano Hor 1:407–414. https://doi.org/10.1039/c6nh00082g

    Article  CAS  Google Scholar 

  209. Katas H, Amin M, Iqbal MC, Moideen N, Ng LY, Baharudin M, Adhwa PA (2017) Cell growth inhibition effect of DsiRNA vectorised by pectin-coated chitosan-graphene oxide nanocomposites as potential therapy for colon cancer. J Nanomater. https://doi.org/10.1155/2017/4298218

    Article  Google Scholar 

  210. Zhang L, Wang Z, Lu Z, Shen H, Huang J, Zhao Q, Liu M, He N, Zhang Z (2013) PEGylated reduced graphene oxide as a superior ssRNA delivery system. J Mater Chem B 1:749–755. https://doi.org/10.1039/c2tb00096b

    Article  CAS  PubMed  Google Scholar 

  211. Feng L, Li K, Shi X, Gao M, Liu J, Liu Z (2014) Smart pH-Responsive nanocarriers based on Nano-Graphene oxide for combined chemo- and photothermal therapy overcoming drug resistance. Adv Healthc Mater 3:1261–1271. https://doi.org/10.1002/adhm.201300549

    Article  CAS  PubMed  Google Scholar 

  212. Rasoulzadeh M, Namazi H (2017) Carboxymethyl cellulose/graphene oxide bio-nanocomposite hydrogel beads as anticancer drug carrier agent. Carbohydr Polym 168:320–326. https://doi.org/10.1016/j.carbpol.2017.03.014

    Article  CAS  PubMed  Google Scholar 

  213. Jeevitha G, Abhinayaa R, Mangalaraj D, Ponpandian N (2018) Tungsten oxide-graphene oxide (WO3-GO) nanocomposite as an efficient photocatalyst, antibacterial and anticancer agent. J Phys Chem Solids 116:137–147. https://doi.org/10.1016/j.jpcs.2018.01.021

    Article  CAS  Google Scholar 

  214. Kazempour M, Namazi H, Akbarzadeh A, Kabiri R (2019) Synthesis and characterization of PEG-functionalized graphene oxide as an effective pH-sensitive drug carrier. Artif Cells Nanomed Biotechnol 47:90–94. https://doi.org/10.1080/21691401.2018.1543196

    Article  CAS  PubMed  Google Scholar 

  215. Zamani M, Rostami M, Aghajanzadeh M (2018) Mesoporous titanium dioxide@zinc oxide–graphene oxide nanocarriers for colon-specific drug delivery. J Mater Sci 53:1634–1645. https://doi.org/10.1007/s10853-017-1673-6

    Article  CAS  Google Scholar 

  216. Liu Z, Robinson JT, Sun X, Dai H (2008) PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J American Chemical Society 130:10876–10877. https://doi.org/10.1021/ja803688x

    Article  CAS  Google Scholar 

  217. Tu Z, Wycisk V, Cheng C, Chen W, Adeli M, Haag R (2017) Functionalized graphene sheets for intracellular controlled release of therapeutic agents. Nanoscale. 9:18931–18939. https://doi.org/10.1039/c7nr06588d

    Article  CAS  PubMed  Google Scholar 

  218. Said AR, Said K, Awwad F (2018) Design, fabrication, and characterization of Hg2+ sensor based on graphite oxide and metallic nanoclusters. Sens and Actuat A: Phys 271:270–277. https://doi.org/10.1016/j.sna.2018.01.033

    Article  CAS  Google Scholar 

  219. Wasfi A, Awwad F, Ayesh AI (2018) Graphene-based nanopore approaches for DNA sequencing: A literature review. Biosens Bioelectron 119:191–203. https://doi.org/10.1016/j.bios.2018.07.072

    Article  CAS  PubMed  Google Scholar 

  220. Niu X, Chen W, Wang X, Men Y, Wang Q, Sun W, Li G (2018) A graphene modified carbon ionic liquid electrode for voltammetric analysis of the sequence of the Staphylococcus aureus nuc gene. Microchim Acta 185:167. https://doi.org/10.1007/s00604-018-2719-4

    Article  CAS  Google Scholar 

  221. Mehmeti E, Stankovic DM, Chaiyo S, Zavasnik J, Zagar K, Kalcher K (2017) Wiring of glucose oxidase with graphene nanoribbons: An electrochemical third generation glucose biosensor. Microchim Acta 184:1127–1134. https://doi.org/10.1007/s00604-017-2115-5

    Article  CAS  Google Scholar 

  222. Wang S, Cazelles R, Liao W, Vazquez-Gonzalez M, Zoabi A, Abu-Reziq R, Willner I (2017) Mimicking horseradish peroxidase and NADH peroxidase by heterogeneous Cu2+-Modified graphene oxide nanoparticles. Nano Lett 17:2043–2048. https://doi.org/10.1021/acs.nanolett.7b00093

    Article  CAS  PubMed  Google Scholar 

  223. Gai K, Kang M, Huang Q (2018) A novel, green, and biocompatible graphene-based carbonaceous material for immobilization of cytochrome C. J Mater Res 33:4270–4277. https://doi.org/10.1557/jmr.2018.387

    Article  CAS  Google Scholar 

  224. Pan Y, Ma H, Huang L (2018) Graphene enhanced transformation of lignin in laccase-ABTS system by accelerating electron transfer. Enzym Microb Technol 119:17–23. https://doi.org/10.1016/j.enzmictec.2018.08.004

    Article  CAS  Google Scholar 

  225. Li N, Than A, Wang X, Xu S, Sun L, Duan H, Xu C, Chen P (2016) Ultrasensitive profiling of metabolites using Tyramine-Functionalized graphene quantum dots. ACS Nano 10:3622–3629. https://doi.org/10.1021/acsnano.5b08103

    Article  CAS  PubMed  Google Scholar 

  226. Navakul K, Warakulwit C, Yenchitsomanus P, Panya A, Lieberzeit PA, Sangma C (2017) A novel method for dengue virus detection and antibody screening using a graphene-polymer based electrochemical biosensor. Nanomed-Nanotechnol. 13:549–557. https://doi.org/10.1016/j.nano.2016.08.009

    Article  CAS  Google Scholar 

  227. Zhou Q, Lin Y, Zhang K, Li M, Tang D (2018) Reduced graphene oxide/BiFeO3 nanohybrids-based signal-on photoelectrochemical sensing system for prostate-specific antigen detection coupling with magnetic microfluidic device. Biosens Bioelectron 101:146–152. https://doi.org/10.1016/j.bios.2017.10.027

    Article  CAS  PubMed  Google Scholar 

  228. Wu H, Lin K, Wang P, Lin C, Yang H, Ma CM, Lu Y, Jan T (2014) Polyethylene glycol-coated graphene oxide attenuates antigen-specific IgE production and enhanced antigen-induced T-cell reactivity in ovalbumin-sensitized BALB/c mice. Int J Nanomedicine 9:4257–4266. https://doi.org/10.2147/IJN.S66768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Ohno Y, Maehashi K, Inoue K, Matsumoto K (2011) Label-free aptamer-based immunoglobulin sensors using graphene field-effect transistors. Jpn J Appl Phys 50:070120. https://doi.org/10.1143/JJAP.50.070120

    Article  CAS  Google Scholar 

  230. Jennings KA (2013) A comparison of the subsecond dynamics of neurotransmission of dopamine and serotonin. ACS Chem Neurosci 4:704–714. https://doi.org/10.1021/cn4000605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Chae M, Kim J, Jeong D, Kim Y, Roh JH, Lee SM, Heo Y, Kang JY, Lee JH, Yoon DS, Kim TG, Chang ST, Hwang KS (2017) Enhancing surface functionality of reduced graphene oxide biosensors by oxygen plasma treatment for Alzheimer's disease diagnosis. Biosens Bioelectron 92:610–617. https://doi.org/10.1016/j.bios.2016.10.049

    Article  CAS  PubMed  Google Scholar 

  232. Jessen K, Rostrup E, Mandl RC, Nielsen MØ, Bak N, Fagerlund B, Ebdrup BH (2018) Cortical structures and their clinical correlates in antipsychotic-naïve schizophrenia patients before and after 6 weeks of dopamine D 2/3 receptor antagonist treatment. Psychol Med:1–10. https://doi.org/10.1017/S0033291718001198

    Article  PubMed  Google Scholar 

  233. Thapa RK, Byeon JH, Choi H, Yong CS, Kim JO (2017) PEGylated lipid bilayer-wrapped nanographene oxides for synergistic co-delivery of doxorubicin and rapamycin to prevent drug resistance in cancers. Nanotechnology. 28:295101. https://doi.org/10.1088/1361-6528/aa7997

    Article  CAS  PubMed  Google Scholar 

  234. Shen H, Liu M, He H, Zhang L, Huang J, Chong Y, Zhang Z (2012) PEGylated graphene oxide-mediated protein delivery for cell function regulation. ACS Appl Mater Interfaces 4:6317–6323. https://doi.org/10.1021/am3019367

    Article  CAS  PubMed  Google Scholar 

  235. Pang Y, Mai Z, Wang B, Wang L, Wu L, Wang X, Chen T (2017) Artesunate-modified nano-graphene oxide for chemo-photothermal cancer therapy. Oncotarget. 8:93800–93812. https://doi.org/10.18632/oncotarget.21191

    Article  PubMed  PubMed Central  Google Scholar 

  236. Zhou T, Zhang B, Wei P, Du Y, Zhou H, Yu M, Yan L, Zhang W, Nie G, Chen C, Tu Y, Wei T (2014) Energy metabolism analysis reveals the mechanism of inhibition of breast cancer cell metastasis by PEG-modified graphene oxide nanosheets. Biomaterials. 35:9833–9843. https://doi.org/10.1016/j.biomaterials.2014.08.033

    Article  CAS  PubMed  Google Scholar 

  237. Markovic ZM, Harhaji-Trajkovic LM, Todorovic-Markovic BM (2011) In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes. Biomaterials. 32:1121–1129. https://doi.org/10.1016/j.biomaterials.2010.10.030

    Article  CAS  PubMed  Google Scholar 

  238. Xu J, Zeng F, Wu H (2015) Dual-targeting nanosystem for enhancing photodynamic therapy efficiency. ACS Appl Mater Interfaces (2017):9287–9296. https://doi.org/10.1021/acsami.5b02297

    Article  CAS  Google Scholar 

  239. Ge L, Wang Y, Yang H, Yang P, Cheng X, Yan M, Yu J (2014) A photoelectrochemical biosensor using ruthenium complex-reduced graphene oxide hybrid as the photocurrent signal reporter assembled on rhombic TiO2 nanocrystals driven by visible light. Anal Chim Acta 828:27–33. https://doi.org/10.1016/j.aca.2014.04.032

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 51802273), Science and Technology Department of Sichuan Province project (No. 19YYJC2882), Foundation of Sichuan Educational Committee (No. 14ZB0050), School Technology Fund of Southwest Petroleum University (No. 2013XJZ016), College Students' Innovative Entrepreneurial Training Projects in Sichuan Province (No. 201810615090), Key Project of Southwest Petroleum University Open Experiments (No. KSZ18427), Key Project of Southwest Petroleum University Open Experiments (No. KSZ17111), Key Project of Southwest Petroleum University Open Experiments (NO. KSZ17112), Key Project of Southwest Petroleum University Open Experiments (NO. KSZ17083), Ordinary Project of Southwest Petroleum University Open Experiments (No. KSP18414). Ordinary Project of Southwest Petroleum University Open Experiments (No. KSP17086).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Yao or Mei Yang.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, J., Wang, H., Chen, M. et al. Recent advances in graphene-based nanomaterials: properties, toxicity and applications in chemistry, biology and medicine. Microchim Acta 186, 395 (2019). https://doi.org/10.1007/s00604-019-3458-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3458-x

Keywords

Navigation