Skip to main content
Log in

Demonstration of the lack of cytotoxicity of unmodified and folic acid modified graphene oxide quantum dots, and their application to fluorescence lifetime imaging of HaCaT cells

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe the synthesis of water-soluble and fluorescent graphene oxide quantum dots via acid exfoliation of graphite nanoparticles. The resultant graphene oxide quantum dots (GoQDs) were then modified with folic acid. Folic acid receptors are overexpressed in cancer cells and hence can bind to functionalized graphene oxide quantum dots. On excitation at 305 nm, the GoQDs display green fluorescence with a peak wavelength at ~520 nm. The modified GoQDs are non-toxic to macrophage cells even after prolonged exposure and high concentrations. Fluorescence lifetime imaging and multiphoton microscopy was used (in combination) to image HeCaT cells exposed to GoQDs, resulting in a superior method for bioimaging.

Schematic representation of graphene oxide quantum dots, folic acid modified graphene oxide quantum dots (red), and the use of fluorescence lifetime to discriminate against green auto-fluorescence of HeCaT cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Weissleder R, Pittet MJ (2008) Imaging in the era of molecular oncology. Nature 452:580–589. https://doi.org/10.1038/nature06917

    Article  CAS  Google Scholar 

  2. Wang D, Chen J-F, Dai L (2015) Recent advances in graphene quantum dots for fluorescence bioimagin from cells through tissues to animals. Part Part Syst Charact 32:515–523

    Article  CAS  Google Scholar 

  3. Fan Z, Li S, Yuan F, Fan L (2015) Fluorescent graphene quantum dots for biosensing and bioimaging. RSC Adv 5:19773–19789. https://doi.org/10.1039/C4RA17131D

    Article  CAS  Google Scholar 

  4. Zhou J, Zhou H, Tang J et al (2017) Carbon dots doped with heteroatoms for fluorescent bioimaging: a review. Microchim Acta 184:343–368. https://doi.org/10.1007/s00604-016-2043-9

    Article  CAS  Google Scholar 

  5. Zhang M, Wang J, Wang W et al (2017) Magnetofluorescent photothermal micelles packaged with GdN@CQDs as photothermal and chemical dual-modal therapeutic agents. Chem Eng J 330:442–452. https://doi.org/10.1016/j.cej.2017.07.138

    Article  CAS  Google Scholar 

  6. Zhang M, Wang W, Yuan P et al (2017) Synthesis of lanthanum doped carbon dots for detection of mercury ion, multi-color imaging of cells and tissue, and bacteriostasis. Chem Eng J 330:1137–1147. https://doi.org/10.1016/j.cej.2017.07.166

    Article  CAS  Google Scholar 

  7. Sun A, Mu L, Hu X (2017) Graphene oxide quantum dots as novel nanozymes for alcohol intoxication. ACS Appl Mater Interfaces 9:12241–12252. https://doi.org/10.1021/acsami.7b00306

    Article  CAS  Google Scholar 

  8. Derfus AM, Chan WCW, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4:11–18

    Article  CAS  Google Scholar 

  9. Clift MJD, Varet J, Hankin SM et al (2011) Quantum dot cytotoxicity in vitro: an investigation into the cytotoxic effects of a series of different surface chemistries and their core/shell materials. Nanotoxicology 5:664–674. https://doi.org/10.3109/17435390.2010.534196

    Article  CAS  Google Scholar 

  10. Clift MJD, Boyles MSP, Brown DM, Stone V (2010) An investigation into the potential for different surface-coated quantum dots to cause oxidative stress and affect macrophage cell signalling in vitro. Nanotoxicology 4:139–149. https://doi.org/10.3109/17435390903276925

    Article  CAS  Google Scholar 

  11. Schroeder KL, Goreham RV, Nann T (2016) Graphene quantum dots for theranostics and bioimaging. Pharm Res 33:2337–2357. https://doi.org/10.1007/s11095-016-1937-x

    Article  CAS  Google Scholar 

  12. Zhang M, Wang W, Zhou N et al (2017) Near-infrared light triggered photo-therapy, in combination with chemotherapy using magnetofluorescent carbon quantum dots for effective cancer treating. Carbon 118:752–764. https://doi.org/10.1016/j.carbon.2017.03.085

    Article  CAS  Google Scholar 

  13. Zhu S, Zhou N, Hao Z et al (2015) Photoluminescent graphene quantum dots for in vitro and in vivo bioimaging using long wavelength emission. RSC Adv 5:39399–39403

    Article  CAS  Google Scholar 

  14. Wang T, Zhu S, Jiang X (2015) Toxicity mechanisms of graphene oxide and nitrogen-doped graphene quantum dots in RBCs revealed by surface-enhanced infrared absorption spectroscopy. Toxicol Res 4:885–894

    Article  CAS  Google Scholar 

  15. Simeonidis K, Mourdikoudis S, Kaprara E et al (2016) Inorganic engineered nanoparticles in drinking water treatment: a critical review. Environ Sci Water Res Technol 2:43–70. https://doi.org/10.1039/C5EW00152H

    Article  Google Scholar 

  16. Polavarapu L, Manna M, Xu Q-H (2011) Biocompatible glutathione capped gold clusters as one- and two- photon excitation fluorescence contrast agents for live cells imaging. Nano 3:429–434. https://doi.org/10.1039/C0NR00458H

    CAS  Google Scholar 

  17. Guan Z, Polavarapu L, Xu Q-H (2010) Enhanced two-photon emission in coupled metal nanoparticles induced by conjugated polymers. Langmuir 26:18020–18023. https://doi.org/10.1021/la103668k

    Article  CAS  Google Scholar 

  18. Becker W (2012) Fluorescence lifetime imaging - techniques and applications. J Microsc 247:119–136. https://doi.org/10.1111/j.1365-2818.2012.03618.x

    Article  CAS  Google Scholar 

  19. Bradley SJ, Kroon R, Laufersky G et al (2017) Heterogeneity in the fluorescence of graphene and graphene oxide quantum dots. Microchim Acta. https://doi.org/10.1007/s00604-017-2075-9

  20. Bourassa P, Tajmir-Riahi HA (2015) Folic acid binds DNA and RNA at different locations. Int J Biol Macromol 74:337–342. https://doi.org/10.1016/j.ijbiomac.2014.12.007

    Article  CAS  Google Scholar 

  21. Palantavida S, Guz NV, Sokolov I (2013) Functionalized ultrabright fluorescent mesoporous silica nanoparticles. Part Part Syst Charact 30:804–811. https://doi.org/10.1002/ppsc.201300143

    Article  CAS  Google Scholar 

  22. Su Y, Zhang M, Zhou N et al (2017) Preparation of fluorescent N,P-doped carbon dots derived from adenosine 5′-monophosphate for use in multicolor bioimaging of adenocarcinomic human alveolar basal epithelial cells. Microchim Acta 184:699–706. https://doi.org/10.1007/s00604-016-2039-5

    Article  CAS  Google Scholar 

  23. Xiao Q, Liang Y, Zhu F et al (2017) Microwave-assisted one-pot synthesis of highly luminescent N-doped carbon dots for cellular imaging and multi-ion probing. Microchim Acta 184:2429–2438. https://doi.org/10.1007/s00604-017-2242-z

    Article  CAS  Google Scholar 

  24. Cheng R, Peng Y, Ge C et al (2017) A turn-on fluorescent lysine nanoprobe based on the use of the alizarin red aluminum(III) complex conjugated to graphene oxide, and its application to cellular imaging of lysine. Microchim Acta 184:3521–3528. https://doi.org/10.1007/s00604-017-2375-0

    Article  CAS  Google Scholar 

  25. Zhu S, Zhang J, Qiao C et al (2011) Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem Commun 47:6858–6860. https://doi.org/10.1039/c1cc11122a

    Article  CAS  Google Scholar 

  26. Huang Y, Bai C, Cao K et al (2014) Chaos to order: an eco-friendly way to synthesize graphene quantum dots. RSC Adv 4:43160–43165. https://doi.org/10.1039/C4RA06757F

    Article  CAS  Google Scholar 

  27. Seyfried TN, Shelton LM (2010) Cancer as a metabolic disease. Nutr Metab 7:7. https://doi.org/10.1186/1743-7075-7-7

    Article  Google Scholar 

  28. Neumann M, Gabel D (2002) Simple method for reduction of autofluorescence in fluorescence microscopy. J Histochem Cytochem 50:437–439. https://doi.org/10.1177/002215540205000315

    Article  CAS  Google Scholar 

  29. Shcheslavskiy VI, Neubauer A, Bukowiecki R et al (2016) Combined fluorescence and phosphorescence lifetime imaging. Appl Phys Lett 108:091111. https://doi.org/10.1063/1.4943265

    Article  Google Scholar 

  30. Gerritsen HC, Sanders R, Draaijer A et al (1997) Fluorescence lifetime imaging of oxygen in living cells. J Fluoresc 7:11–15. https://doi.org/10.1007/BF02764572

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. David M. Brown and Prof. Vicki Stone from Heriot-Watt University for their hospitality and advice for determining the nanotoxicity of graphene oxide quantum dots. We look forward to future collaborations. Thank you to the Royal Society London for funding travels to Edinburgh to visit Heriot-Watt University. Hauke Studier for undertaking the initial analysis using MPM. Ruihua Guo from Beijing Normal University who aided in discussion in the initial stages of the project.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Renee V. Goreham.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 2985 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goreham, R., Schroeder, K.L., Holmes, A. et al. Demonstration of the lack of cytotoxicity of unmodified and folic acid modified graphene oxide quantum dots, and their application to fluorescence lifetime imaging of HaCaT cells. Microchim Acta 185, 128 (2018). https://doi.org/10.1007/s00604-018-2679-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2679-8

Keywords

Navigation