Skip to main content
Log in

Synthesis of CuO/g-C3N4 composites, and their application to voltammetric sensing of glucose and dopamine

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The preparation of 3 kinds of carbonaceous nanocomposites by hydrothermal treatment and subsequent calcination described. The first comprises a nanomaterial of type CuO/g-C3N4, with g-C3N4 in mass fractions of 2, 5 and 7 wt%, respectively. The second comprises CuO/porous carbon (5 wt%), and the third comprises CuO/carbon spheres (5 wt%). All of them were employed to modify a glassy carbon electrode (GCE) to obtain electrochemical sensors for glucose and dopamine. The GCE modified with CuO/g-C3N4 (5 wt%) displays the highest electrocatalytic activity towards glucose and dopamine. Figures of merit for sensing glucose (in 0.1 M NaOH solution) include a wide linear range (0.5 μM to 8.5 mM), a detection limit of 0.150 μM, and a sensitivity of 0.274 μA·μM−1·cm−2 (at a working potential of 0.60 V vs. Ag/AgCl). The respective data for dopamine (in pH 7.0 solution) are linear ranges from 0.2-16.0 μM and 16.0-78.7 μM, a lower detection limit of 60 nM, and an electrochemical sensitivity of 0.834 and 0.331 μA·μM−1·cm−2 (at a working potential of 0.22 V vs. Ag/AgCl). The good performance of the modified GCE is attributed to the synergetic interactions between CuO and the appropriate fraction of g-C3N4, and the improvement of conductivity.

Schematic presentation of a electrochemical sensor based on CuO/g-C3N4 for the determination of glucose and dopamine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wen D, Liu W, Herrmann AK, Haubold D, Holzschuh M, Simon F et al (2016) Simple and sensitive colorimetric detection of dopamine based on assembly of cyclodextrin-modified au nanoparticles. Small 12:2439–2442

    Article  CAS  PubMed  Google Scholar 

  2. Kannan P, Maiyalagan T, Marsili E, Ghosh S et al (2017) Highly active 3-dimensional cobalt oxide nanostructures on the flexible carbon substrates for enzymeless glucose sensing. Analyst 142:4299–4307

    Article  CAS  PubMed  Google Scholar 

  3. Xia YS, Ye JJ, Tan KH, Wang J, Yang G (2013) Colorimetric visualization of glucose at the submicromole level in serum by a homogenous silver nanoprism-glucose oxidase system. Anal Chem 85:6241–6247

    Article  CAS  PubMed  Google Scholar 

  4. Wang Y, Yang L, Liu Y, Zhao Q, Ding F, Zou P, Rao H, Wang X (2018) Colorimetric determination of dopamine by exploiting the enhanced oxidase mimicking activity of hierarchical NiCo2S4-rGO composites. Microchim Acta 185:496

    Article  Google Scholar 

  5. Xu S, Chen L, Ma L (2018) Fluorometric determination of quercetin by using graphitic carbon nitride nanoparticles modified with a molecularly imprinted polymer. Microchim Acta 185:492

    Article  Google Scholar 

  6. Krishnamoorthy K, Sudha V, Kumar SMS, Thangamuthu R (2018) Simultaneous determination of dopamine and uric acid using copper oxide nano-rice modified electrode. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2018.03.118

  7. Fang L, Wang F, Chen Z, Qiu Y, Zhai T, Hu M, Zhang C, Huang K (2017) Flower-like MoS2 decorated with Cu2O nanoparticles for non-enzymatic amperometric sensing of glucose. Talanta 167:593–599

    Article  CAS  PubMed  Google Scholar 

  8. Yang S, Li G, Wang G, Zhao J, Gao X, Qu L (2015) Synthesis of Mn3O4 nanoparticles/nitrogen-doped graphene hybrid composite for nonenzymatic glucose sensor. Sensors Actuators B Chem 221:172

    Article  CAS  Google Scholar 

  9. Reddy S, Swamy BEK, Jayadevappa H (2012) CuO nanoparticle sensor for the electrochemical determination of dopamine. Electrochim Acta 61:78–86

    Article  CAS  Google Scholar 

  10. Dhara K, Mahapatra DR (2018) Electrochemical nonenzymatic sensing of glucose using advanced nanomaterials. Microchim Acta 185(1):49

    Article  Google Scholar 

  11. Xu TQ, Zhang QL, Zheng JN, Lv ZY, Wei J (2014) Simultaneous determination of dopamine and uric acid in the presence of ascorbic acid using Pt nanoparticles supported on reduced graphene oxide. Electrochim Acta 115:109–115

    Article  CAS  Google Scholar 

  12. Jampaiah T, Reddy TS, Coyle VE, Nafady A, Bhargava SK (2016) Co3O4@CeO2 hybrid flower-like microspheres: a strong synergistic peroxidase-mimicking artificial enzyme with high sensitivity for glucose detection. J Mater Chem B 5:720–730

    Article  Google Scholar 

  13. Zhang L, Gao Z, Liu C, Ren L, Tu Z, Liu R, Yang F, Zhang Y, Ye Z, Li Y, Cui L (2014) N-doped nanoporous graphene decorated three-dimensional CuO nanowire network and its application to photocatalytic degradation of dyes. RSC Adv 4:47455–47460

    Article  CAS  Google Scholar 

  14. Ma Y, Zhao M, Cai B, Wang W, Ye Z, Huang J (2014) 3D graphene foams decorated by CuO nanoflowers for ultrasensitive ascorbic acid detection. Biosens Bioelectron 59:384–388

    Article  CAS  PubMed  Google Scholar 

  15. Li L, Hu Y, Deng D, Song H, Lv Y (2016) Highly sensitive cataluminescence gas sensors for 2-butanone based on g-C3N4 sheets decorated with CuO nanoparticles. Anal Bioanal Chem 408:8831–8841

    Article  CAS  PubMed  Google Scholar 

  16. Zhang H, Zhang G, Li Z, Qu K, Wang L, Zeng W, Zhang Q, Duan H (2016) Ultra-uniform CuO/cu in nitrogen-doped carbon nanofibers as a stable anode for Li-ion batteries. J Mater Chem A 4:10585–10592

    Article  CAS  Google Scholar 

  17. Zhao C, Wu X, Li P, Zhao C, Qian X (2017) Hydrothermal deposition of CuO/rGO/Cu2O nanocomposite on copper foil for sensitive nonenzymatic voltammetric determination of glucose and hydrogen peroxide. Microchim Acta 184:2341–2348

    Article  CAS  Google Scholar 

  18. Liu B, Ouyang X, Ding Y, Luo L, Xu D, Ning Y (2016) Electrochemical preparation of nickel and copper oxides-decorated graphene composite for simultaneous determination of dopamine, acetaminophen and tryptophan. Talanta 146:114–121

    Article  CAS  PubMed  Google Scholar 

  19. Jindal K, Tomar M, Gupta V (2017) A novel low-powered uric acid biosensor based on arrayed p-n junction heterostructures of ZnO thin film and CuO microclusters. Sensors Actuators B Chem 253:566–575

    Article  CAS  Google Scholar 

  20. Xue B, Li K, Feng L, Lu J, Zhang L (2017) Graphene wrapped porous Co3O4/NiCo2O4 double-shelled nanocages with enhanced electrocatalytic performance for glucose sensor. Electrochim Acta 239:36–44

    Article  CAS  Google Scholar 

  21. Fang L, Xie Y, Wang Y et al (2019) Facile synthesis of hierarchical porous carbon nanorods for supercapacitors application. Appl Surf Sci 46:4479–4487

    Google Scholar 

  22. Zhao Y, Xu S, Sun X, Xu X, Gao B (2018) Unique bar-like sulfur-doped C3N4/TiO2 nanocomposite: excellent visible light driven photocatalytic activity and mechanism study. Appl Surf Sci 436:873–881

    Article  CAS  Google Scholar 

  23. Zou J, Wu S, Liu Y, Sun Y, Cao Y, Hsu JP, Thye A, Wee S, Jiang J (2018) An ultra-sensitive electrochemical sensor based on 2D g-C3N4/CuO nanocomposites for dopamine detection. Carbon 130:652–663

    Article  CAS  Google Scholar 

  24. Xu S, Zhu H, Cao W, Wen Z, Wang J et al (2018) Cu-Al2O3-g-C3N4 and cu-Al2O3-C-dots with dual-reaction centres for simultaneous enhancement of Fenton-like catalytic activity and selective H2O2 conversion to hydroxyl radicals. Appl Catal B-Environ 234:223-233

  25. Shen L, Yu L, Yu XY, Zhang X, Lou XW (2015) Self-templated formation of uniform NiCo2O4 hollow spheres with complex interior structures for lithium-ion batteries and supercapacitors. Angew Chem 127:1888–1892

    Article  Google Scholar 

  26. Mao Z, Chen J, Yang Y, Wang D, Bie L, Fahlman BD (2017) Novel g-C3N4/CoO nanocomposites with significantly enhanced visible-light photocatalytic activity for H evolution. ACS Appl Mater Interfaces 9:12427–12435

    Article  CAS  PubMed  Google Scholar 

  27. Gong Y, Li M, Wang Y (2015) Carbon nitride in energy conversion and storage: recent advances and future prospects. Chem Sus Chem 8:931–946

    Article  CAS  Google Scholar 

  28. Chen J, Liu C, Huang Y, Lee H, Feng S (2018) Study of the growth mechanisms of nanoporous ag flowers for non-enzymatic glucose detection. Microchem J. https://doi.org/10.1088/1361-6528/aae363

  29. Li Y, He X, Guo M, Lin D et al (2018) Porous NiTe2 nanosheet array: An effective electrochemical sensor for glucose detection. Sensors Actuat B:Chem. https://doi.org/10.1016/j.snb.2018.07.17

  30. He J, Jiang Y, Peng J, Li C, Yan B, Wang X (2016) Fast synthesis of hierarchical cuprous oxide for nonenzymatic glucose biosensors with enhanced sensitivity. J Mater Sci 51:9696–9704

    Article  CAS  Google Scholar 

  31. Luan F, Zhang S, Chen D et al (2018) Ni3S2/ionic liquid-functionalized graphene as an enhanced material for the nonenzymatic detection of glucose. Microchem J. https://doi.org/10.1016/j.microc.2018.08.046

  32. Zhang X, Zhang Y, Ma L (2016) One-pot facile fabrication of graphene-zinc oxide composite and its enhanced sensitivity for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid. Sensors Actuators B Chem 227:488–496

    Article  CAS  Google Scholar 

  33. Li B, Zhou Y, Wu W, Liu M, Mei S, Zhou Y et al (2015) Highly selective and sensitive determination of dopamine by the novel molecularly imprinted poly(nicotinamide)/CuO nanoparticles modified electrode. Biosens Bioelectron 67:121–128

    Article  CAS  PubMed  Google Scholar 

  34. Lian QW, Luo A, An Z, Li Z, Guo Y, Zhang D, Xue Z, Zhou X, Lu X (2015) Au nanoparticles on tryptophan-functionalized graphene for sensitive detection of dopamine. Appl Surf Sci 349:184–189

    Article  CAS  Google Scholar 

  35. Khan MZH, Liu X, Tang Y, Zhu J, Hu W (2018) A glassy carbon electrode modified with a composite consisting of gold nanoparticle, reduced graphene oxide and poly(L-arginine) for simultaneous voltammetric determination of dopamine, serotonin and L-tryptophan. Microchim Acta 185:439

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the National Natural Science Foundation of China (Grant No. 21205030), and by key project of Hubei provincial education department (D20171001), and Hubei Key Laboratory of Ferro & Piezoelectric Materials and Devices (201710), and (111 project, B12015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huimin Wu or Guangxue Zhang.

Ethics declarations

The author(s) declare that they have no competing interests.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 4915 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Tan, Y., Feng, C. et al. Synthesis of CuO/g-C3N4 composites, and their application to voltammetric sensing of glucose and dopamine. Microchim Acta 186, 10 (2019). https://doi.org/10.1007/s00604-018-3120-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-3120-z

Keywords

Navigation