Skip to main content
Log in

Post-assay growth of gold nanoparticles as a tool for highly sensitive lateral flow immunoassay. Application to the detection of potato virus X

  • Short Communication
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

This article demonstrates a new kind of a highly sensitive lateral flow immunoassay (LFIA). It is based on the enlargement of the size of gold nanoparticles (GNPs) directly on the test strip after a conventional LFIA. Particle size enlargement is accomplished through the catalytic reduction of HAuCl4 in the presence of H2O2 and through the accumulation of additional gold on the surface of the GNPs. To attain maximal enhancement of the coloration of the zone in the test strip and to achieve a minimal background, the concentration of precursors, the pH value, and the incubation time were optimized. GNPs on the test strip are enlarged from 20 to 350 nm after a 1-min treatment at room temperature. The economically important and widespread phytopathogen potato virus X (PVX) was used as the target analyte. The use of the GNP enlargement method results in a 240-fold reduction in the limit of the detection of PVX, which can be as low as 17 pg·mL−1. The total duration of the assay, including virus extraction from the potato leaves, lateral flow, and the enhancement process, is only 12 min. The diagnostic efficiency of the technique was confirmed by its application to the analysis of potato leave samples. No false positives or false negatives were found. The technique does not depend on specific features of the target analyte, and it is conceivably applicable to numerous GNP-based LFIAs for important analytes.

An enlargement solution (containing HAuCl4 and H2O2) was dripped on the strip after common lateral flow immunoassay. Gold nanoparticles on the strip (20 nm) catalyze gold reduction and the formation of larger particles (up to 350 nm), resulting in a 240-fold lower detection limit within 1 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Mahato K, Srivastava A, Chandra P (2017) Paper based diagnostics for personalized health care: emerging technologies and commercial aspects. Biosens Bioelectron 96:246–259. https://doi.org/10.1016/j.bios.2017.05.001

    Article  CAS  PubMed  Google Scholar 

  2. Dzantiev BB, Byzova NA, Urusov AE, Zherdev AV (2014) Immunochromatographic methods in food analysis. TrAC Trends Anal Chem 55:81–93. https://doi.org/10.1016/j.trac.2013.11.007

    Article  CAS  Google Scholar 

  3. Mak WC, Beni V, Turner APF (2016) Lateral-flow technology: from visual to instrumental. TrAC Trends Anal Chem 79:297–305. https://doi.org/10.1016/j.trac.2015.10.017

    Article  CAS  Google Scholar 

  4. Zherdev AV, Dzantiev BB (2018) Ways to reach lower detection limits in lateral flow immunoassays. In: Anfossi L (ed) Rapid Test – Advances in Design, Format and Diagnostic Applications InTechOpen, London, pp 9–43. ISBN 978-953-51-5953-7. https://doi.org/10.5772/intechopen.76926

    Google Scholar 

  5. Goryacheva IY, Lenain P, De Saeger S (2013) Nanosized labels for rapid immunotests. TrAC Trends Anal Chem 46:30–43. https://doi.org/10.1016/j.trac.2013.01.013

    Article  CAS  Google Scholar 

  6. Quesada-González D, Merkoçi A (2015) Nanoparticle-based lateral flow biosensors. Biosens Bioelectron 73:47–63. https://doi.org/10.1016/j.bios.2015.05.050

    Article  CAS  PubMed  Google Scholar 

  7. Di Nardo F, Baggiani C, Giovannoli C et al (2017) Multicolor immunochromatographic strip test based on gold nanoparticles for the determination of aflatoxin B1 and fumonisins. Microchim Acta 184:1295–1304. https://doi.org/10.1007/s00604-017-2121-7

    Article  CAS  Google Scholar 

  8. Yang Y, Ozsoz M, Liu G (2017) Gold nanocage-based lateral flow immunoassay for immunoglobulin G. Microchim Acta 184:2023–2029. https://doi.org/10.1007/s00604-017-2176-5

    Article  CAS  Google Scholar 

  9. Bahadır EB, Sezgintürk MK (2016) Lateral flow assays: principles, designs and labels. TrAC Trends Anal Chem 82:286–306. https://doi.org/10.1016/j.trac.2016.06.006

    Article  CAS  Google Scholar 

  10. Posthuma-Trumpie GA, Korf J, van Amerongen A (2009) Lateral flow (immuno)assay: its strengths, weaknesses, opportunities and threats. A literature survey. Anal Bioanal Chem 393:569–582. https://doi.org/10.1007/s00216-008-2287-2

    Article  CAS  PubMed  Google Scholar 

  11. Han S, Zhou T, Yin B, He P (2018) Gold nanoparticle-based colorimetric ELISA for quantification of ractopamine. Microchim Acta 185:210. https://doi.org/10.1007/s00604-018-2736-3

    Article  CAS  Google Scholar 

  12. Rodríguez MO, Covián LB, García AC, Blanco-López MC (2016) Silver and gold enhancement methods for lateral flow immunoassays. Talanta 148:272–278. https://doi.org/10.1016/j.talanta.2015.10.068

    Article  CAS  PubMed  Google Scholar 

  13. Yang W, Li X, Liu G, Zhang BB, Zhang Y, Kong T, Tang JJ, Li DN, Wang Z (2011) A colloidal gold probe-based silver enhancement immunochromatographic assay for the rapid detection of abrin-a. Biosens Bioelectron 26:3710–3713. https://doi.org/10.1016/j.bios.2011.02.016

    Article  CAS  PubMed  Google Scholar 

  14. Dykman L, Khlebtsov N (2012) Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem Soc Rev 41:2256–2282. https://doi.org/10.1039/C1CS15166E

    Article  CAS  PubMed  Google Scholar 

  15. Wang J, Chen M, Sheng Z et al (2015) Development of colloidal gold immunochromatographic signal-amplifying system for ultrasensitive detection of Escherichia coli O157:H7 in milk. RSC Adv 5:62300–62305. https://doi.org/10.1039/C5RA13279G

    Article  CAS  Google Scholar 

  16. Park J, Shin JH, Park J-K (2016) Pressed paper-based dipstick for detection of foodborne pathogens with multistep reactions. Anal Chem 88:3781–3788. https://doi.org/10.1021/acs.analchem.5b04743

    Article  CAS  PubMed  Google Scholar 

  17. Li J, Zou M, Chen Y, Xue Q, Zhang F, Li B, Wang Y, Qi X, Yang Y (2013) Gold immunochromatographic strips for enhanced detection of avian influenza and Newcastle disease viruses. Anal Chim Acta 782:54–58. https://doi.org/10.1016/j.aca.2013.04.022

    Article  CAS  PubMed  Google Scholar 

  18. Bu T, Huang Q, Yan L, Huang L, Zhang M, Yang Q, Yang B, Wang J, Zhang D (2018) Ultra technically-simple and sensitive detection for Salmonella enteritidis by immunochromatographic assay based on gold growth. Food Control 84:536–543. https://doi.org/10.1016/j.foodcont.2017.08.036

    Article  CAS  Google Scholar 

  19. Dias JT, Svedberg G, Nystrand M, Andersson-Svahn H, Gantelius J (2017) Rapid signal enhancement method for nanoprobe-based biosensing. Sci Rep 7:6837. https://doi.org/10.1038/s41598-017-07030-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gaur RK, Khurana SMP, Dorokhov Y (2018) Plant viruses diversity, interaction and management, 1st edn. CRC Press, Boca Raton, p 387

    Book  Google Scholar 

  21. Safenkova IV, Zherdev AV, Dzantiev BB (2010) Correlation between the composition of multivalent antibody conjugates with colloidal gold nanoparticles and their affinity. J Immunol Methods 357:17–25. https://doi.org/10.1016/j.jim.2010.03.010

    Article  CAS  PubMed  Google Scholar 

  22. Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci 241:20–22. https://doi.org/10.1038/physci241020a0

    Article  CAS  Google Scholar 

  23. Zhou N, Wang J, Chen T, Yu Z, Li G (2006) Enlargement of gold nanoparticles on the surface of a self-assembled monolayer modified electrode: a mode in biosensor design. Anal Chem 78:5227–5230. https://doi.org/10.1021/ac0605492

    Article  CAS  PubMed  Google Scholar 

  24. Pestovskii YS, Budashov IA, Kurochkin IN (2011) Investigation into the growth of gold nanoparticles immobilized on a mica surface due to tetrachloroauric acid reduction by hydrogen peroxide. Nanotechnol Russ 6:189–195. https://doi.org/10.1134/S1995078011020145

    Article  Google Scholar 

  25. Rettcher S, Jungk F, Kühn C, Krause HJ, Nölke G, Commandeur U, Fischer R, Schillberg S, Schröper F (2015) Simple and portable magnetic immunoassay for rapid detection and sensitive quantification of plant viruses. Appl Environ Microbiol 81:3039–3048. https://doi.org/10.1128/AEM.03667-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Caglayan MG, Kasap E, Cetin D, Suludere Z, Tamer U (2017) Fabrication of SERS active gold nanorods using benzalkonium chloride, and their application to an immunoassay for potato virus X. Microchim Acta 184:1059–1067. https://doi.org/10.1007/s00604-017-2102-x

    Article  CAS  Google Scholar 

  27. Drygin YF, Blintsov AN, Grigorenko VG, Andreeva IP, Osipov AP, Varitzev YA, Uskov AI, Kravchenko DV, Atabekov JG (2012) Highly sensitive field test lateral flow immunodiagnostics of PVX infection. Appl Microbiol Biotechnol 93:179–189. https://doi.org/10.1007/s00253-011-3522-x

    Article  CAS  PubMed  Google Scholar 

  28. Banttari EE (1991) Rapid magnetic microsphere enzyme immunoassay for potato virus x and potato leafroll virus. Phytopathology 81:1039. https://doi.org/10.1094/Phyto-81-1039

    Article  CAS  Google Scholar 

  29. Safenkova IV, Pankratova GK, Zaitsev IA, Varitsev YA, Vengerov YY, Zherdev AV, Dzantiev BB (2016) Multiarray on a test strip (MATS): rapid multiplex immunodetection of priority potato pathogens. Anal Bioanal Chem 408:6009–6017. https://doi.org/10.1007/s00216-016-9463-6

    Article  CAS  PubMed  Google Scholar 

  30. Weilbach A, Sander E (2000) Quantitative detection of potato viruses X and Y (PVX, PVY) with antibodies raised in chicken egg yolk (IgY) by ELISA variants. J Plant Dis Prot 107:318–328

    Google Scholar 

  31. Panferov VG, Safenkova IV, Zherdev AV, Dzantiev BB (2017) Setting up the cut-off level of a sensitive barcode lateral flow assay with magnetic nanoparticles. Talanta 164:69–76. https://doi.org/10.1016/j.talanta.2016.11.025

    Article  CAS  PubMed  Google Scholar 

  32. Panferov VG, Safenkova IV, Varitsev YA, Zherdev AV, Dzantiev BB (2018) Enhancement of lateral flow immunoassay by alkaline phosphatase: a simple and highly sensitive test for potato virus X. Microchim Acta 185:25. https://doi.org/10.1007/s00604-017-2595-3

    Article  CAS  Google Scholar 

  33. Razo SC, Panferov VG, Safenkova IV, Varitsev YA, Zherdev AV, Dzantiev BB (2018) Double-enhanced lateral flow immunoassay for potato virus X based on a combination of magnetic and gold nanoparticles. Anal Chim Acta 1007:50–60. https://doi.org/10.1016/j.aca.2017.12.023

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Russian Science Foundation (grant 16-16-04108).

The authors are grateful to Yu.A. Varitsev (A.G. Lorch All-Russian Potato Research Institute, Korenevo, Russia) for providing the infected and healthy plants and virus samples, S.M. Pridvorova (Research Center of Biotechnology of the Russian Acad. Sci.) and Yu.V. Sorokopudova (Tescan Company, Moscow office) for the SEM and EDC analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris B. Dzantiev.

Ethics declarations

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(PDF 2952 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panferov, V.G., Safenkova, I.V., Zherdev, A.V. et al. Post-assay growth of gold nanoparticles as a tool for highly sensitive lateral flow immunoassay. Application to the detection of potato virus X. Microchim Acta 185, 506 (2018). https://doi.org/10.1007/s00604-018-3052-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-3052-7

Keywords

Navigation