Skip to main content
Log in

Multiarray on a test strip (MATS): rapid multiplex immunodetection of priority potato pathogens

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Multiarray on a test strip (MATS) was developed for the detection of eight important potato pathogens. The proposed assay combines the rapidity of immunochromatography with the high throughput of array techniques. The test zone of the immunochromatographic strip comprises ordered rows of spots containing antibodies specific for different potato pathogens. The assay benefits from the simplicity of immunochromatography; colored immune complexes form at the corresponding spots within the test zone. The presence and intensity of the coloration are used for identification of the target pathogens. The MATS was applied to the simultaneous detection of eight priority potato pathogens, characterized by the following limits of detection: 1 ng/mL for potato virus X and the ordinary type of potato virus Y, 10 ng/mL for potato virus M, 20 ng/mL for potato leaf roll virus, 40 ng/mL for necrotic-type potato virus Y, 100 ng/mL for potato virus S, 300 ng/mL for potato virus A, and 104 cells/mL for Clavibacter michiganensis subsp. sepedonicus. Analysis time was 15 min. The observed sensitivity of the MATS was comparable to the traditional enzyme-linked immunosorbent assay. The developed technique was tested on potato leaf extracts, and its efficiency for on-site control of the pathogens was confirmed in 100 % by commercial LFIA test strips.

Location of binding zones in the developed multiarray on a test strip (MATS) for simultaneous detection of eight pathogens

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dzantiev BB, Byzova NA, Urusov AE, Zherdev AV. Immunochromatographic methods in food analysis. TrAC-Trend Anal Chem. 2014;55:81–93.

    Article  CAS  Google Scholar 

  2. Marquette CA, Corgier BP, Blum LJ. Recent advances in multiplex immunoassays. Bioanalysis. 2012;4(8):927–36.

    Article  CAS  Google Scholar 

  3. Tighe PJ, Ryder RR, Todd I, Fairclough LC. ELISA in the multiplex era: potentials and pitfalls. Proteom Clin Appl. 2015;9(3–4):406–22.

    Article  CAS  Google Scholar 

  4. Charermroj R, Himananto O, Seepiban C, Kumpoosiri M, Warin N, Gajanandana O, et al. Antibody array in a multiwell plate format for the sensitive and multiplexed detection of important plant pathogens. Anal Chem. 2014;86(14):7049–56.

    Article  Google Scholar 

  5. Ngom B, Guo YC, Wang XL, Bi DR. Development and application of lateral flow test strip technology for detection of infectious agents and chemical contaminants: a review. Anal Bioanal Chem. 2010;397(3):1113–35.

    Article  CAS  Google Scholar 

  6. Posthuma-Trumpie G, Korf J, Amerongen A. Lateral flow (immuno)assay: its strengths, weaknesses, opportunities and threats. A literature survey. Anal Bioanal Chem. 2009;393(2):569–82.

    Article  CAS  Google Scholar 

  7. Gantelius J, Bass T, Sjoberg R, Nilsson P, Andersson-Svahn H. A lateral flow protein microarray for rapid and sensitive antibody assays. Int J Mol Sci. 2011;12:7748–59.

    Article  CAS  Google Scholar 

  8. Taranova NA, Byzova NA, Zaiko VV, Starovoitova TA, Vengerov YY, Zherdev AV, et al. Integration of lateral flow and microarray technologies for multiplex immunoassay: application to the determination of drugs of abuse. Microchim Acta. 2013;180(11–12):1165–72.

    Article  CAS  Google Scholar 

  9. Tighe P, Negm O, Todd I, Fairclough L. Utility, reliability and reproducibility of immunoassay multiplex kits. Methods. 2013;61(1):23–9.

    Article  CAS  Google Scholar 

  10. Gantelius J, Hamsten C, Neiman M, Schwenk JM, Persson A, Andersson-Svahn H. A lateral flow protein microarray for rapid determination of contagious bovine pleuropneumonia status in bovine serum. J Microbiol Methods. 2010;82(1):11–8.

    Article  CAS  Google Scholar 

  11. Reutersward P, Gantelius J, Andersson Svahn H. An 8 minute colorimetric paper-based reverse phase vertical flow serum microarray for screening of hyper IgE syndrome. Analyst (Cambridge, U K). 2015;140:7327–34.

    Article  Google Scholar 

  12. Chinnasamy T, Segerink LI, Nystrand M, Gantelius J, Svahn HA. A lateral flow paper microarray for rapid allergy point of care diagnostics. Analyst (Cambridge, U K). 2014;139:2348–54.

    Article  CAS  Google Scholar 

  13. Narayanasamy P. Diagnosis of viral and viroid diseases of plants. In: Microbial plant pathogens-detection and disease diagnosis. Springer Netherlands; 2011. pp 295–312.

  14. Narayanasamy P. Diagnosis of bacterial diseases of plants. In: Microbial plant pathogens-detection and disease diagnosis. Springer Netherlands; 2011. pp 233–246.

  15. De Boer SH, Lopez MM. New grower-friendly methods for plant pathogen monitoring. Annu Rev Phytopathol. 2012;50:197–218.

    Article  Google Scholar 

  16. Nezhad AS. Future of portable devices for plant pathogen diagnosis. Lab Chip. 2014;14(16):2887–904.

    Article  CAS  Google Scholar 

  17. Samsatly J, Jawhari M, Najjar C, Sobh H, Abou-Jawdah Y. Modification of serological techniques and their evaluation for detection of potato viruses in seed certification related activities. Crop Prot. 2014;61:51–7.

    Article  Google Scholar 

  18. Charlermroj R, Himananto O, Seepiban C, Kumpoosiri M, Warin N, Oplatowska M, et al. Multiplex detection of plant pathogens using a microsphere immunoassay technology. PLoS One. 2013;8(4):e62344. doi:10.1371/journal.pone.0062344.

    Article  CAS  Google Scholar 

  19. Bergervoet JHW, Peters J, van Beckhoven J, van den Bovenkamp GW, Jacobson JW, van der Wolf JM. Multiplex microsphere immuno-detection of potato virus Y, X and PLRV. J Virol Methods. 2008;149(1):63–8.

    Article  CAS  Google Scholar 

  20. Zhang M, Chen W, Chen X, Zhang Y, Lin X, Wu Z, et al. Multiplex immunoassays of plant viruses based on functionalized upconversion nanoparticles coupled with immunomagnetic separation. J Nanomater. 2013;2013:8. doi:10.1155/2013/317437.

    Google Scholar 

  21. Potrykus M, Sledz W, Golanowska M, Slawiak M, Binek A, Motyka A, et al. Simultaneous detection of major blackleg and soft rot bacterial pathogens in potato by multiplex polymerase chain reaction. Ann Appl Biol. 2014;165:474–87.

    Article  CAS  Google Scholar 

  22. Ge BB, Li Q, Liu GJ, Lu MG, Li SF, Wang HQ. Simultaneous detection and identification of four viruses infecting pepino by multiplex RT-PCR. Arch Virol. 2013;158(6):1181–7.

    Article  CAS  Google Scholar 

  23. Peiro A, Pallas V, Sanchez-Navarro JA. Simultaneous detection of eight viruses and two viroids affecting stone fruit trees by using a unique polyprobe. Eur J Plant Pathol. 2012;132(4):469–75.

    Article  CAS  Google Scholar 

  24. Safenkova IV, Zaitsev IA, Pankratova GK, Varitsev YA, Zherdev AV, Dzantiev BB. Lateral flow immunoassay for rapid detection of potato ring rot caused by Clavibacter michiganensis subsp sepedonicus. Appl Biochem Microbiol. 2014;50(6):675–82.

    Article  CAS  Google Scholar 

  25. Byzova NA, Safenkova IV, Chirkov SN, Zherdev AV, Blintsov AN, Dzantiev BB, et al. Development of immunochromatographic test systems for express detection of plant viruses. Appl Biochem Microbiol. 2009;45(2):204–9.

    Article  CAS  Google Scholar 

  26. Safenkova IV, Zherdev AV, Dzantiev BB. Factors influencing the detection limit of the lateral-flow sandwich immunoassay: a case study with potato virus X. Anal Bioanal Chem. 2012;403(6):1595–605.

    Article  CAS  Google Scholar 

  27. Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci. 1973;241(105):20–2.

    Article  CAS  Google Scholar 

  28. Safenkova IV, Zherdev AV, Dzantiev BB. Correlation between the composition of multivalent antibody conjugates with colloidal gold nanoparticles and their affinity. J Immunol Methods. 2010;357(1−2):17–25.

    Article  CAS  Google Scholar 

  29. Panferov VG, Safenkova IV, Varitsev YA, Drenova NV, Kornev KP, Zherdev AV, Dzantiev BB Development of the sensitive lateral flow immunoassay with silver enhancement for the detection of Ralstonia solanacearum in potato tubers. Talanta. 2016;152:521–30.

  30. Byzova NA, Safenkova IV, Chirkov SN, Avdienko VG, Guseva AN, Mitrofanova IV, et al. Interaction of plum pox virus with specific colloidal gold-labeled antibodies and development of immunochromatographic assay of the virus. Biochemistry (Moscow). 2010;75(11):1393–403.

    Article  CAS  Google Scholar 

  31. Zhang XQ, Li D, Wang C, Zhi X, Zhang CL, Wang K, et al. A CCD-based reader combined quantum dots-labeled lateral flow strips for ultrasensitive quantitative detection of anti-HBs antibody. J Biomed Nanotechnol. 2012;8(3):372–9.

    Article  CAS  Google Scholar 

  32. Yan Z, Zhou L, Zhao Y, Wang J, Huang L, Hu K, et al. Rapid quantitative detection of Yersinia pestis by lateral-flow immunoassay and up-converting phosphor technology-based biosensor. Sens Actuators, B. 2006;119(2):656–63.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Russian Science Foundation (Grant No. 14-16-00149).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris B. Dzantiev.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Published in the topical collection Immunoanalysis for Environmental Monitoring and Human Health with guest editors Shirley J. Gee, Ivan R. Kennedy, Alice Lee, Hideo Ohkawa, Tippawan Prapamontol, and Ting Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 732 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safenkova, I.V., Pankratova, G.K., Zaitsev, I.A. et al. Multiarray on a test strip (MATS): rapid multiplex immunodetection of priority potato pathogens. Anal Bioanal Chem 408, 6009–6017 (2016). https://doi.org/10.1007/s00216-016-9463-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9463-6

Keywords

Navigation