Skip to main content
Log in

Fabrication of SERS active gold nanorods using benzalkonium chloride, and their application to an immunoassay for potato virus X

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors report on a robust method for the synthesis of gold nanorods (AuNRs) with tunable dimensions and longitudinal surface plasmon resonance. The method relies on seed-mediated particle growth in the presence of benzalkonium chloride (BAC) in place of the widely used surfactant cetyltrimethyl ammonium bromide (CTAB). Uniform AuNRs were obtained by particle growth in solution, and BAC is found to stabilize the AuNRs for >1 year. The SERS activity of the resulting AuNRs is essentially identical to that of CTAB-protected nanorods. The SERS activity of the BAC protected nanorods was applied to the quantitative analysis of potato virus X (PVX). The calibration plot for PVX is linear in the 10 to 750 ng⋅mL−1 concentration range, and the detection limit is 2.2 ng⋅mL−1.

SERS-active gold nanorods (AuNRs) have been prepared by using benzalkonium chloride as stabilization agent. Effects of chemical parameters on AuNRs have been explored and AuNRs were used in quantitative analysis of potato virus X (PVX).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Schmid G (ed) (2010) Nanoparticles: from theory to application, 2nd edn. Wiley-Blackwell, Weinheim. doi:10.1002/9783527631544

  2. Zhao P, Li N, Astruc D (2013) State of the art in gold nanoparticle synthesis. Coord Chem Rev 257(3–4):638–665. doi:10.1016/j.ccr.2012.09.002

    Article  CAS  Google Scholar 

  3. Chen F, Wang Y, Ma J, Yang G (2014) A biocompatible synthesis of gold nanoparticles by Tris(hydroxymethyl)aminomethane. Nanoscale Res Lett 9:1–6. doi:10.1186/1556-276x-9-220

    Article  Google Scholar 

  4. Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA (2012) The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41:2740–2779. doi:10.1039/c1cs15237h

    Article  CAS  Google Scholar 

  5. Sperling RA, Rivera Gil P, Zhang F, Zanella M, Parak WJ (2008) Biological applications of gold nanoparticles. Chem Soc Rev 37(9):1896–1908. doi:10.1039/b712170a

    Article  CAS  Google Scholar 

  6. Guerrero-Martínez A, Pérez-Juste J, Carbó-Argibay E, Tardajos G, Liz-Marzán LM (2009) Gemini-surfactant-directed self-assembly of monodisperse gold nanorods into standing Superlattices. Angew Chem Int Ed 48(50):9484–9488. doi:10.1002/anie.200904118

    Article  Google Scholar 

  7. Perez-Juste J, Pastoriza-Santos I, Liz-Marzan LM, Mulvaney P (2005) Gold nanorods: synthesis, characterization and applications. Coord Chem Rev 249:1870–1901. doi:10.1016/j.ccr.2005.01.030

    Article  CAS  Google Scholar 

  8. Zia R, Schuller JA, Chandran A, Brongersma ML (2006) Plasmonics: the next chip-scale technology. Mater Today (Oxford, U K) 9:20–27. doi:10.1016/s1369-7021(06)71572-3

    Article  CAS  Google Scholar 

  9. Yu C, Varghese L, Irudayaraj J (2007) Surface modification of cetyltrimethylammonium bromide-capped gold nanorods to make molecular probes. Langmuir 23(17):9114–9119. doi:10.1021/la701111e

    Article  CAS  Google Scholar 

  10. Ye X, Gao Y, Chen J, Reifsnyder DC, Zheng C, Murray CB (2013) Seeded growth of monodisperse gold nanorods using bromide-free surfactant mixtures. Nano Lett 13(5):2163–2171. doi:10.1021/nl400653s

    Article  CAS  Google Scholar 

  11. Schacter D (2013) The source of toxicity in ctab and ctab-stabilized gold nanorods. Master of Science Thesis, The State University of New Jersey. doi:10.7282/T3X63KMS

  12. Johnson CJ, Dujardin E, Davis SA, Murphy CJ, Mann S (2002) Growth and form of gold nanorods prepared by seed-mediated, surfactant-directed synthesis. J Mater Chem 12(6):1765–1770. doi:10.1039/b200953f

    Article  CAS  Google Scholar 

  13. Liu G-SP (2005) Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids. J Phys Chem B 109(47):22192–22200. doi:10.1021/jp054808n

    Article  CAS  Google Scholar 

  14. Orendorff CJ, Murphy CJ (2006) Quantitation of metal content in the silver-assisted growth of gold nanorods. J Phys Chem B 110(9):3990–3994. doi:10.1021/jp0570972

    Article  CAS  Google Scholar 

  15. Choi B-S, Iqbal M, Lee T, Kim YH, Tae G (2008) Removal of cetyltrimethylammonium bromide to enhance the biocompatibility of Au nanorods synthesized by a modified seed mediated growth process. J Nanosci Nanotechnol 8:4670–4674. doi:10.1166/jnn.2008.IC18

    Article  CAS  Google Scholar 

  16. Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD (2005) Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1(3):325–327. doi:10.1002/smll.200400093

    Article  CAS  Google Scholar 

  17. Koyama K, Shimazu Y (2005) Benzalkonium chlorides. Springer GmbH, pp 407–413. doi:10.1007/3-540-27579-7_45

  18. Freeman PD, Kahook MY (2009) Preservatives in topical ophthalmic medications: historical and clinical perspectives. Expert Review of Ophthalmology 4(1):59–64. doi:10.1586/17469899.4.1.59

    Article  Google Scholar 

  19. Pisella PJ, Fillacier K, Elena PP, Debbasch C, Baudouin C (2000) Comparison of the effects of preserved and unpreserved formulations of Timolol on the ocular surface of albino rabbits. Ophthalmic Res 32(1):3–8

    Article  CAS  Google Scholar 

  20. Törnblom M, Henriksson U (1997) Effect of Solubilization of aliphatic hydrocarbons on size and shape of Rodlike C16TABr micelles studied by 2H NMR relaxation. J Phys Chem B 101(31):6028–6035. doi:10.1021/jp970899f

    Article  Google Scholar 

  21. Zhu Y, Free ML (2015) Evaluation of ion effects on surfactant aggregation from improved molecular thermodynamic modeling. Ind Eng Chem Res 54:9052–9056. doi:10.1021/acs.iecr.5b02103

    Article  CAS  Google Scholar 

  22. Grzelczak M, Perez-Juste J, Mulvaney P, Liz-Marzan LM (2008) Shape control in gold nanoparticle synthesis. Chem Soc Rev 37(9):1783–1791. doi:10.1039/b711490g

    Article  CAS  Google Scholar 

  23. Schluecker S (2011) SERS microscopy: nanoparticle probes and biomedical applications. In: Wiley-VCH Verlag GmbH & Co. KGaA, pp 263–283. doi:10.1002/9783527632756.ch12

  24. Wang Y, Wang E (2010) Nanoparticle SERS substrates. In: Surface enhanced Raman spectroscopy. Wiley-VCH Verlag GmbH & Co. KGaA, pp 39–69. doi:10.1002/9783527632756.ch2

  25. Yang Y, Liu J, Fu Z-W, Qin D (2014) Galvanic replacement-free deposition of Au on Ag for Core–Shell Nanocubes with enhanced chemical stability and SERS activity. J Am Chem Soc 136(23):8153–8156. doi:10.1021/ja502472x

    Article  CAS  Google Scholar 

  26. Rycenga M, Xia X, Moran CH, Zhou F, Qin D, Li Z-Y, Xia Y (2011) Generation of hot spots with silver Nanocubes for single-molecule detection by surface-enhanced Raman scattering. Angew Chem Int Ed 50(24):5473–5477. doi:10.1002/anie.201101632

    Article  CAS  Google Scholar 

  27. Guven B, Basaran-Akgul N, Temur E, Tamer U, Boyac IH (2011) SERS-based sandwich immunoassay using antibody coated magnetic nanoparticles for Escherichia coli enumeration. Analyst 136(4):740–748. doi:10.1039/c0an00473a

    Article  CAS  Google Scholar 

  28. Ulman A (1996) Formation and structure of self-assembled monolayers. Chem Rev (Washington, DC) 96:1533–1554. doi:10.1021/cr9502357

    Article  CAS  Google Scholar 

  29. Batten JS, Yoshinari S, Hemenway C (2003) Potato virus X: a model system for virus replication, movement and gene expression. Mol Plant Pathol 4(2):125–131. doi:10.1046/j.1364-3703.2003.00156.x

    Article  CAS  Google Scholar 

  30. Tamer U, Guendogdu Y, Boyaci IH, Pekmez K (2010) Synthesis of magnetic core-shell Fe3O4-Au nanoparticle for biomolecule immobilization and detection. J Nanopart Res 12:1187–1196. doi:10.1007/s11051-009-9749-0

    Article  CAS  Google Scholar 

  31. Xia Y, Xiong Y, Lim B, Skrabalak SE (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 48(1):60–103. doi:10.1002/anie.200802248

    Article  CAS  Google Scholar 

  32. Alonso-González P, Albella P, Schnell M, Chen J, Huth F, García-Etxarri A, Casanova F, Golmar F, Arzubiaga L, Hueso LE, Aizpurua J, Hillenbrand R (2012) Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots. Nat Commun 3:684. doi:10.1038/ncomms1674l

    Article  Google Scholar 

  33. Weilbach A, Sander E (2000) Quantitative detection of potato viruses X and Y (PVX, PVY) with antibodies raised in chicken egg yolk (IgY) by ELISA variants. Journal of Plant Diseases and Protection 107(3):318–328

    Google Scholar 

  34. Le Ru EC, Blackie E, Meyer M, Etchegoin PG (2007) Surface enhanced Raman scattering enhancement factors: a comprehensive study. J Phys Chem C 111(37):13794–13803. doi:10.1021/jp0687908

    Article  CAS  Google Scholar 

  35. Ma P, Liang F, Wang D, Yang Q, Ding Y, Yu Y, Gao D, Song D, Wang X (2015) Ultrasensitive determination of formaldehyde in environmental waters and food samples after derivatization and using silver nanoparticle assisted SERS. Microchim Acta 182(3):863–869. doi:10.1007/s00604-014-1400-9

    Article  CAS  Google Scholar 

  36. Bu Y, Lee SW (2015) Flower-like gold nanostructures electrodeposited on indium tin oxide (ITO) glass as a SERS-active substrate for sensing dopamine. Microchim Acta 182(7):1313–1321. doi:10.1007/s00604-015-1453-4

    Article  CAS  Google Scholar 

  37. Pan Y, Guo X, Zhu J, Wang X, Zhang H, Kang Y, Wu T, Du Y (2015) A new SERS substrate based on silver nanoparticle functionalized polymethacrylate monoliths in a capillary, and it application to the trace determination of pesticides. Microchim Acta 182(9):1775–1782. doi:10.1007/s00604-015-1514-8

    Article  CAS  Google Scholar 

  38. Bamrungsap S, Treetong A, Apiwat C, Wuttikhun T, Dharakul T (2016) SERS-fluorescence dual mode nanotags for cervical cancer detection using aptamers conjugated to gold-silver nanorods. Microchim Acta 183(1):249–256. doi:10.1007/s00604-015-1639-9

    Article  CAS  Google Scholar 

  39. Villa JEL, Santos DP, Poppi RJ (2016) Fabrication of gold nanoparticle-coated paper and its use as a sensitive substrate for quantitative SERS analysis. Microchim Acta 183(10):2745–2752. doi:10.1007/s00604-016-1918-0

  40. Vassalini I, Rotunno E, Lazzarini L, Alessandri I (2015) “Stainless” gold nanorods: preserving shape, optical properties, and SERS activity in oxidative environment. ACS Appl Mater Interfaces 7(33):18794–18802. doi:10.1021/acsami.5b07175

    Article  CAS  Google Scholar 

  41. Zhang Q, Han L, Jing H, Blom DA, Lin Y, Xin HL, Wang H (2016) Facet control of gold nanorods. ACS Nano 10(2):2960–2974. doi:10.1021/acsnano.6b00258

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge COST CA15114 -TUBITAK Project no: 114Z783 for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ugur Tamer.

Ethics declarations

The authors declare that they have no competing interest.

Electronic supplementary material

ESM 1

(DOCX 1738 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caglayan, M.G., Kasap, E., Cetin, D. et al. Fabrication of SERS active gold nanorods using benzalkonium chloride, and their application to an immunoassay for potato virus X. Microchim Acta 184, 1059–1067 (2017). https://doi.org/10.1007/s00604-017-2102-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2102-x

Keywords

Navigation