Skip to main content

Advertisement

Log in

Graphene Quantum Dots for Theranostics and Bioimaging

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Since their advent in the early 1990s, nanomaterials hold promise to constitute improved technologies in the biomedical area. In particular, graphene quantum dots (GQDs) were conjectured to produce new or improve current methods used for bioimaging, drug delivery, and biomarker sensors for early detection of diseases. This review article critically compares and discusses current state-of-the-art use of GQDs in biology and health sciences. It shows the ability of GQDs to be easily functionalised for use as a targeted multimodal treatment and imaging platform. The in vitro and in vivo toxicity of GQDs are explored showing low toxicity for many types of GQDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

1O2 :

Singlet oxygen

3T3-L1:

Adipocyte cells

3T3-L1:

Adipocyte cells

A549:

Human lung carcinoma cells

BSA:

Bovine serum albumin

CD44:

A type of receptor

Ce6:

Chlorine e6

CFP-10:

A tuberculosis antigen

CHO-K1:

Chinese hamster ovary cells

CPCs:

Cardiac progenitor cells

Cur:

Curcumin

DAPI:

4′,6-diamidino-2-phenylindole, a dye

DGO:

Double-oxidised graphen oxide

DHR:

Dihydrorohdamine, a redox sensitive dye

DNA:

Deoxyribonucleic acid

DOX:

Doxorubicin

DTT:

Dithiothreitol

Em:

Emission

EPR:

Electron paramagnetic resonance

Ex:

Excitation

FA:

Folic acid

FRET:

Forster/fluorescence resonance energy transfer

GBP:

Gold binding protein

GO:

Graphene oxide

GoQD:

Oxidised graphene quantum dots

GQD:

Graphene quantum dot

GSH:

Glutathione

HA:

Hyaluronic acid

HCT 116:

Human colon adenocarcinoma cells

HEK293A:

Human embryonic kidney cells

HeLa:

Human cervical cancer cells

HepG2:

Human liver carcinoma cells

HER2:

Receptors on some breast cancer cells

hNSCs:

Human neural stem cells

HOMO:

Highest molecular orbital

IP:

Intraperitoneal

IR:

Infrared

IV:

Intravenous

LDH:

Lactase dehydrogenase

LI:

Lidocaine

LUMO:

Lowest molecular orbital

Mag-Plas:

Magneto-plasmonic

MC3T3:

Mouse osteoblastic cells

MCF-7:

Human breast cancer cells

MDCK:

Madin-Darby canine kidney epithelial cells

MG-63:

Human osteosarcoma cells

MGC-803:

Kidney cancer cells

MRI:

Magnetic resonance imaging

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

Na2-ADPA:

Disodium 9,10-anthracen-dipropionic acid

NGF:

Nerve growth factor

N-GQDs:

GQDs doped with nitrogen

NP:

Nanoparticle

NSCs:

Neurosphere cells

NW:

Nanowire

PBS:

Phosphate buffered saline

PC12:

Neuroendocrine cells

PDT:

Photodynamic therapy

PEG:

Polyethylene glycol

PEI:

Polyethylenimine

PL:

Photoluminescence

PNF:

Peptide nano fibre

PNFs:

Peptide nanofibers

PPCs:

Pancreas progenitor cells

PpIX:

Protoporphyrin IX

PS:

Photosensitiser

QD:

Quantum dot

QY:

Quantum yield

r1 :

Longitudinal relaxivity

r-GQDs:

Reduced GQD

ROS:

Reactive oxygen species

SERS:

Surface-enhanced Raman scattering

SS:

Disulfide

T47D:

Human breast cancer cells

U251:

Human glioma cells

References

  1. Bacon M, Bradley SJ, Nann T. Graphene quantum dots. Part Part Syst Charact. 2014;31(4):415–28.

    Article  CAS  Google Scholar 

  2. Shen J, Zhu Y, Yang X, Li C. Graphene quantum dots:emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem Commun. 2012;48(31):3686–99.

  3. Ha HD, Jang M-H, Liu F, Cho Y-H, Seo TS. Upconversion photoluminescent metal ion sensors via two photon absorption in graphene oxide quantum dots. Carbon. 2015;81:367–75.

    Article  CAS  Google Scholar 

  4. Dong A, Ye X, Chen J, Kang Y, Gordon T, Kikkawa JM, et al. A generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals. J Am Chem Soc. 2012;133(4):998–1006.

    Article  Google Scholar 

  5. Dong Y, Shao J, Chen C, Li H, Wang R, Chi Y, et al. Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon. 2012;50(12):4738–43.

    Article  CAS  Google Scholar 

  6. Geim AK, MacDonald AH. Graphene: exploring carbon flatland. Phys Today. 2007;60(8):35–41.

    Article  CAS  Google Scholar 

  7. Liu F, Jang M-H, Ha HD, Kim J-H, Cho Y-H, Seo TS. Facile synthetic method for pristine graphene quantum dots and graphene oxide quantum dots: origin of blue and green luminescence. Adv Mater. 2013;25(27):3657–62.

    Article  CAS  PubMed  Google Scholar 

  8. Simpson CD, Brand JD, Berresheim AJ, Przybilla L, Räder HJ, Müllen K. Synthesis of a giant 222 carbon graphite sheet. Chem Eur J. 2002;8(6):1424–9.

    Article  CAS  PubMed  Google Scholar 

  9. Wu J, Tomović Ž, Enkelmann V, Müllen K. From branched hydrocarbon propellers to C3-symmetric graphite disks. J Org Chem. 2004;69(16):5179–86.

    Article  CAS  PubMed  Google Scholar 

  10. Tang L, Ji R, Cao X, Lin J, Jiang H, Li X, et al. Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano. 2012;6(6):5102–10.

    Article  CAS  PubMed  Google Scholar 

  11. Liu R, Wu D, Feng X, Müllen K. Bottom-up fabrication of photoluminescent graphene quantum dots with uniform morphology. J Am Chem Soc. 2011;133(39):15221–3.

    Article  CAS  PubMed  Google Scholar 

  12. Röding M, Bradley SJ, Nydén M, Nann T. Fluorescence lifetime analysis of graphene quantum dots. J Phys Chem C. 2014;118(51):30282–90.

    Article  Google Scholar 

  13. Sheng W, Korkusinski M, Güçlü AD, Zielinski M, Potasz P, Kadantsev ES, et al. Electronic and optical properties of semiconductor and graphene quantum dots. Front Phys. 2012;7(3):328–52.

    Article  Google Scholar 

  14. Ding H, Wei J-S, Xiong H-M. Nitrogen and sulfur co-doped carbon dots with strong blue luminescence. Nanoscale. 2014;6(22):13817–23.

    Article  CAS  PubMed  Google Scholar 

  15. Jiang F, Chen D, Li R, Wang Y, Zhang G, Li S, et al. Eco-friendly synthesis of size-controllable amine-functionalized graphene quantum dots with antimycoplasma properties. Nanoscale. 2013;5(3):1137.

    Article  CAS  PubMed  Google Scholar 

  16. Li Y, Zhao Y, Cheng H, Hu Y, Shi G, Dai L, et al. Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. J Am Chem Soc. 2012;134(1):15–8.

    Article  CAS  PubMed  Google Scholar 

  17. Abdullah-Al-Nahain, Lee J-E, In I, Lee H, Lee KD, Jeong JH, et al. Target delivery and cell imaging using hyaluronic acid-functionalized graphene quantum dots. Mol Pharm. 2013;10(10):3736–44.

    Article  CAS  PubMed  Google Scholar 

  18. Huang C-L, Huang C-C, Mai F-D, Yen C-L, Tzing S-H, Hsieh H-T, et al. Application of paramagnetic graphene quantum dots as a platform for simultaneous dual-modality bioimaging and tumor-targeted drug delivery. J Mater Chem B. 2015;3(4):651–64.

    Article  CAS  Google Scholar 

  19. Yuan X, Liu Z, Guo Z, Ji Y, Jin M, Wang X. Cellular distribution and cytotoxicity of graphene quantum dots with different functional groups. Nanoscale Res Lett. 2014;9(1):1–9.

    Article  Google Scholar 

  20. Zheng XT, Than A, Ananthanaraya A, Kim D-H, Chen P. Graphene quantum dots as universal fluorophores and their use in revealing regulated trafficking of insulin receptors in adipocytes. ACS Nano. 2013;7(7):6278–86.

    Article  CAS  PubMed  Google Scholar 

  21. Chandra A, Deshpande S, Shinde DB, Pillai VK, Singh N. Mitigating the cytotoxicity of graphene quantum dots and enhancing their applications in bioimaging and drug delivery. ACS Macro Lett. 2014;3(10):1064–8.

    Article  CAS  Google Scholar 

  22. Nigam P, Waghmode S, Louis M, Wangnoo S, Chavan P, Sarkar D. Graphene quantum dots conjugated albumin nanoparticles for targeted drug delivery and imaging of pancreatic cancer. J Mater Chem B. 2014;2(21):3190–5.

    Article  CAS  Google Scholar 

  23. Wang X, Sun X, Lao J, He H, Cheng T, Wang M, et al. Multifunctional graphene quantum dots for simultaneous targeted cellular imaging and drug delivery. Colloids Surf B: Biointerfaces. 2014;122:638–44.

    Article  CAS  PubMed  Google Scholar 

  24. Justin R, Román S, Chen D, Tao K, Geng X, Grant RT, et al. Biodegradable and conductive chitosan–graphene quantum dot nanocomposite microneedles for delivery of both small and large molecular weight therapeutics. RSC Adv. 2015;5(64):51934–46.

    Article  CAS  Google Scholar 

  25. Some S, Gwon A-R, Hwang E, Bahn G, Yoon Y, Kim Y, et al. Cancer therapy using ultrahigh hydrophobic drug-loaded graphene derivatives. Sci Rep. 2014;4:6314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang C, Wu C, Zhou X, Han T, Xin X, Wu J, et al. Enhancing cell nucleus accumulation and DNA cleavage activity of anti-cancer drug via graphene quantum dots. Sci Rep. 2013;3:2852.

    PubMed  PubMed Central  Google Scholar 

  27. Zheng XT, He HL, Li CM. Multifunctional graphene quantum dots-conjugated titanate nanoflowers for fluorescence-trackable targeted drug delivery. RSC Adv. 2013;3(47):24853–7.

    Article  CAS  Google Scholar 

  28. Shao T, Wang G, An X, Zhuo S, Xia Y, Zhu C. A reformative oxidation strategy using high concentration nitric acid for enhancing the emission performance of graphene quantum dots. RSC Adv. 2014;4(89):47977–81.

    Article  CAS  Google Scholar 

  29. Su Z, Shen H, Wang H, Wang J, Li J, Nienhaus GU, et al. Motif-designed peptide nanofibers decorated with graphene quantum dots for simultaneous targeting and imaging of tumor cells. Adv Funct Mater. 2015;25(34):5472–8.

    Article  CAS  Google Scholar 

  30. Elliott WH, Elliott DC. Biochemistry and molecular biology. 4th ed. Oxford University Press; 2009. 568 p.

  31. Zou F, Zhou H, Tan TV, Kim J, Koh K, Lee J. Dual-mode SERS-fluorescence immunoassay using graphene quantum dot labeling on one-dimensional aligned magnetoplasmonic nanoparticles. ACS Appl Mater Interfaces. 2015;7(22):12168–75.

    Article  CAS  PubMed  Google Scholar 

  32. Agudelo D, Bourassa P, Bérubé G, Tajmir-Riahi H-A. Intercalation of antitumor drug doxorubicin and its analogue by DNA duplex: structural features and biological implications. Int J Biol Macromol. 2014;66:144–50.

    Article  CAS  PubMed  Google Scholar 

  33. Li Y, Wu Z, Du D, Dong H, Shi D, Li Y. A graphene quantum dot (GQD) nanosystem with redox-triggered cleavable PEG shell facilitating selective activation of the photosensitiser for photodynamic therapy. RSC Adv. 2016;6(8):6516–22.

    Article  CAS  Google Scholar 

  34. Zhu S, Zhang J, Liu X, Li B, Wang X, Tang S, et al. Graphene quantum dots with controllable surface oxidation, tunable fluorescence and up-conversion emission. RSC Adv. 2012;2(7):2717–20.

    Article  CAS  Google Scholar 

  35. Liu Q, Guo B, Rao Z, Zhang B, Gong JR. Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging. Nano Lett. 2013;13(6):2436–41.

    Article  CAS  PubMed  Google Scholar 

  36. Peng J, Gao W, Gupta BK, Liu Z, Romero-Aburto R, Ge L, et al. Graphene quantum dots derived from carbon fibers. Nano Lett. 2012;12(2):844–9.

    Article  CAS  PubMed  Google Scholar 

  37. Jiang D, Chen Y, Li N, Li W, Wang Z, Zhu J, et al. Synthesis of luminescent graphene quantum dots with high quantum yield and their toxicity study. PLoS One. 2015; 10(12).

  38. Nurunnabi M, Khatun Z, Huh KM, Park SY, Lee DY, Cho KJ, et al. In vivo Biodistribution and toxicology of carboxylated graphene quantum dots. ACS Nano. 2013;7(8):6858–67.

    Article  CAS  PubMed  Google Scholar 

  39. Liu Y, Gao B, Qiao Z, Hu Y, Zheng W, Zhang L, et al. Gram-scale synthesis of graphene quantum dots from single carbon atoms growth via energetic material deflagration. Chem Mater. 2015;27(12):4319–27.

    Article  CAS  Google Scholar 

  40. Zhu C, Yang S, Wang G, Mo R, He P, Sun J, et al. A new mild, clean and highly efficient method for the preparation of graphene quantum dots without by-products. J Mater Chem B. 2015;3(34):6871–6.

    Article  CAS  Google Scholar 

  41. Zhu S, Zhang J, Qiao C, Tang S, Li Y, Yuan W, et al. Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem Commun. 2011;47(24):6858–60.

    Article  CAS  Google Scholar 

  42. Zhu S, Zhang J, Tang S, Qiao C, Wang L, Wang H, et al. Surface chemistry routes to modulate the photoluminescence of graphene quantum dots: from fluorescence mechanism to up-conversion bioimaging applications. Adv Funct Mater. 2012;22(22):4732–40.

    Article  CAS  Google Scholar 

  43. Sk MA, Ananthanarayanan A, Huang L, Lim KH, Chen P. Revealing the tunable photoluminescence properties of graphene quantum dots. J Mater Chem C. 2014;2(34):6954.

    Article  CAS  Google Scholar 

  44. Zhang M, Bai L, Shang W, Xie W, Ma H, Fu Y, et al. Facile synthesis of water-soluble, highly fluorescent graphene quantum dots as a robust biological label for stem cells. J Mater Chem. 2012;22(15):7461–7.

    Article  CAS  Google Scholar 

  45. Ge J, Lan M, Zhou B, Liu W, Guo L, Wang H, et al. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat Commun. 2014;5:4596.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Nurunnabi M, Khatun Z, Reeck GR, Lee DY, Lee Y. Near infra-red photoluminescent graphene nanoparticles greatly expand their use in noninvasive biomedical imaging. Chem Commun. 2013;49(44):5079–81.

    Article  CAS  Google Scholar 

  47. Sun Y, Wang S, Li C, Luo P, Tao L, Wei Y, et al. Large scale preparation of graphene quantum dots from graphite with tunable fluorescence properties. Phys Chem Chem Phys. 2013;15(24):9907–13.

    Article  CAS  PubMed  Google Scholar 

  48. Zhou L, Geng J, Liu B. Graphene quantum dots from polycyclic aromatic hydrocarbon for bioimaging and sensing of Fe3+ and hydrogen peroxide. Part Part Syst Charact. 2013;30(12):1086–92.

    Article  CAS  Google Scholar 

  49. Qin Y, Zhou Z-W, Pan S-T, He Z-X, Zhang X, Qiu J-X, et al. Graphene quantum dots induce apoptosis, autophagy, and inflammatory response via p38 mitogen-activated protein kinase and nuclear factor-κB mediated signaling pathways in activated THP-1 macrophages. Toxicology. 2015;327:62–76.

    Article  CAS  PubMed  Google Scholar 

  50. Zhu S, Zhou N, Hao Z, Maharjan S, Zhao X, Song Y, et al. Photoluminescent graphene quantum dots for in vitro and in vivo bioimaging using long wavelength emission. RSC Adv. 2015;5(49):39399–403.

    Article  CAS  Google Scholar 

  51. Cao L, Wang X, Meziani MJ, Lu F, Wang H, Luo PG, et al. Carbon dots for multiphoton bioimaging. J Am Chem Soc. 2007;129(37):11318–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kobayashi H, Ogawa M, Alford R, Choyke PL, Urano Y. New strategies for fluorescent probe design in medical diagnostic imaging. Chem Rev. 2010;110(5):2620–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shang W, Zhang X, Zhang M, Fan Z, Sun Y, Han M, et al. The uptake mechanism and biocompatibility of graphene quantum dots with human neural stem cells. Nanoscale. 2014;6(11):5799–806.

    Article  CAS  PubMed  Google Scholar 

  54. Wu C, Wang C, Han T, Zhou X, Guo S, Zhang J. Insight into the cellular internalization and cytotoxicity of graphene quantum dots. Adv Healthcare Mater. 2013;2(12):1613–9.

    Article  CAS  Google Scholar 

  55. Kakran M, Sahoo NG, Bao H, Pan Y, Li L. Functionalized graphene oxide as nanocarrier for loading and delivery of ellagic acid. Curr Med Chem. 2011;18(29):4503–12.

    Article  CAS  PubMed  Google Scholar 

  56. Chong Y, Ma Y, Shen H, Tu X, Zhou X, Xu J, et al. The in vitro and in vivo toxicity of graphene quantum dots. Biomaterials. 2014;35(19):5041–8.

    Article  CAS  PubMed  Google Scholar 

  57. Wang T, Zhu S, Jiang X. Toxicity mechanisms of graphene oxide and nitrogen-doped graphene quantum dots in RBCs revealed by surface-enhanced infrared absorption spectroscopy. Toxicol Res. 2015;4:885–94.

    Article  CAS  Google Scholar 

  58. Liu J-H, Yang S-T, Wang H, Chang Y, Cao A, Liu Y. Effect of size and dose on the biodistribution of graphene oxide in mice. Nanomedicine. 2012;7(12):1801–12.

    Article  CAS  PubMed  Google Scholar 

  59. Duch MC, Budinger GS, Liang YT, Soberanes S, Urich D, Chiarella SE, et al. Minimizing oxidation and stable nanoscale dispersion improves the biocompatibility of graphene in the lung. Nano Lett. 2011;11(12):5201–7.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Haase A, Tentschert J, Jungnickel H, Graf P, Mantion A, Draude F, et al. Toxicity of silver nanoparticles in human macrophages: uptake, intracellular distribution and cellular responses. J Phys Conf Ser. 2011;304:12030.

    Article  Google Scholar 

  61. Wang A, Pu K, Dong B, Liu Y, Zhang L, Zhang Z, et al. Role of surface charge and oxidative stress in cytotoxicity and genotoxicity of graphene oxide towards human lung fibroblast cells: toxicity of graphene oxide to HLF cells. J Appl Toxicol. 2013;33(10):1156–64.

    Article  CAS  PubMed  Google Scholar 

  62. Alarifi S, Ali D, Verma A, Almajhdi FN, Al-Qahtani AA. Single-walled carbon nanotubes induce cytotoxicity and DNA damage via reactive oxygen species in human hepatocarcinoma cells. In Vitro Cell Dev Biol Anim. 2014;50(8):714–22.

    Article  CAS  PubMed  Google Scholar 

  63. Dworak N, Wnuk M, Zebrowski J, Bartosz G, Lewinska A. Genotoxic and mutagenic activity of diamond nanoparticles in human peripheral lymphocytes in vitro. Carbon. 2014;68:763–76.

    Article  CAS  Google Scholar 

  64. Wang D, Zhu L, Chen J-F, Dai L. Can graphene quantum dots cause DNA damage in cells? Nanoscale. 2015;7(21):9894–901.

    Article  CAS  PubMed  Google Scholar 

  65. Zhao J, Chen G, Zhu L, Li G. Graphene quantum dots-based platform for the fabrication of electrochemical biosensors. Electrochem Commun. 2011;13(1):31–3.

    Article  CAS  Google Scholar 

  66. Zhang Y, Wu C, Zhou X, Wu X, Yang Y, Wu H, et al. Graphene quantum dots/gold electrode and its application in living cell H2O2 detection. Nanoscale. 2013;5(5):1816–9.

    Article  CAS  PubMed  Google Scholar 

  67. Sun H, Gao N, Dong K, Ren J, Qu X. Graphene quantum dots-band-aids used for wound disinfection. ACS Nano. 2014;8(6):6202–10.

    Article  CAS  PubMed  Google Scholar 

  68. Markovic ZM, Ristic BZ, Arsikin KM, Klisic DG, Harhaji-Trajkovic LM, Todorovic-Markovic BM, et al. Graphene quantum dots as autophagy-inducing photodynamic agents. Biomaterials. 2012;33(29):7084–92.

    Article  CAS  PubMed  Google Scholar 

  69. Brown SB, Brown EA, Walker I. The present and future role of photodynamic therapy in cancer treatment. Lancet Oncol. 2004;5(8):497–508.

    Article  CAS  PubMed  Google Scholar 

  70. Leatherdale CA, Woo W-K, Mikulec FV, Bawendi MG. On the absorption cross section of CdSe nanocrystal quantum dots. J Phys Chem B. 2002;106(31):7619–22.

    Article  CAS  Google Scholar 

  71. Nann T. Nanoparticles in photodynamic therapy. Nano Biomed Eng. 2011;3(2):137–43.

    Article  CAS  Google Scholar 

  72. Nurunnabi M, Parvez K, Nafiujjaman M, Revuri V, Khan HA, Feng X, et al. Bioapplication of graphene oxide derivatives: drug/gene delivery, imaging, polymeric modification, toxicology, therapeutics and challenges. RSC Adv. 2015;5(52):42141–61.

    Article  CAS  Google Scholar 

  73. Charron G, Stuchinskaya T, Edwards DR, Russell DA, Nann T. Insights into the mechanism of quantum dot-sensitized singlet oxygen production for photodynamic therapy. J Phys Chem C. 2012;116(16):9334–42.

    Article  CAS  Google Scholar 

  74. Samia ACS, Chen X, Burda C. Semiconductor quantum dots for photodynamic therapy. J Am Chem Soc. 2003;125(51):15736–7.

    Article  CAS  PubMed  Google Scholar 

  75. Ma J, Chen J-Y, Idowu M, Nyokong T. Generation of singlet oxygen via the composites of water-soluble thiol-capped CdTe quantum dots sulfonated aluminum phthalocyanines. J Phys Chem B. 2008;112(15):4465–9.

    Article  CAS  PubMed  Google Scholar 

  76. Bakalova R, Ohba H, Zhelev Z, Nagase T, Jose R, Ishikawa M, et al. Quantum dot anti-CD conjugates: are they potential photosensitizers or potentiators of classical photosensitizing agents in photodynamic therapy of cancer? Nano Lett. 2004;4(9):1567–73.

    Article  CAS  Google Scholar 

  77. Longmire M, Choyke PL, Kobayashi H. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomed. 2008;3(5):703–17.

    Article  CAS  Google Scholar 

  78. Ristic BZ, Milenkovic MM, Dakic IR, Todorovic-Markovic BM, Milosavljevic MS, Budimir MD, et al. Photodynamic antibacterial effect of graphene quantum dots. Biomaterials. 2014;35(15):4428–35.

    Article  CAS  PubMed  Google Scholar 

  79. Jovanović SP, Syrgiannis Z, Marković ZM, Bonasera A, Kepić DP, Budimir MD, et al. Modification of structural and luminescence properties of graphene quantum dots by gamma irradiation and their application in a photodynamic therapy. ACS Appl Mater Interfaces. 2015;7(46):25865–74.

    Article  PubMed  Google Scholar 

  80. Jovanović S, Marković Z, Budimir M, Spitalsky Z, Vidoeski B, Marković BT. Effects of low gamma irradiation dose on the photoluminescence properties of graphene quantum dots. Opt Quant Electron. 2016;48(4):1–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Nann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schroeder, K.L., Goreham, R.V. & Nann, T. Graphene Quantum Dots for Theranostics and Bioimaging. Pharm Res 33, 2337–2357 (2016). https://doi.org/10.1007/s11095-016-1937-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-016-1937-x

KEY WORDS

Navigation