Skip to main content
Log in

Ce doped ZnO/f-MWCNT moss ball like nanocomposite: a strategy for high responsive current detection of L-tryptophan

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An electrochemical sensor is described for the determination of L-tryptophan (TRP). The method is based on the use of a glassy carbon electrode (GCE) modified with a nanocomposite consisting of moss ball-like cerium-doped ZnO and functionalized multiwalled carbon nanotubes (Ce-ZnO/f-MWCNT). Ce-doped ZnO was synthesized by a low temperature hydrothermal method. The Ce-ZnO/f-MWCNT nanocomposite was characterized by X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, FTIR and field emission scanning electron microscopy. The nanocomposite was drop cast on a GCE for use in electrochemical detection of TRP via cyclic voltammetry and differential pulse voltammetry. The oxidation peak current (0.76 V vs. Ag/AgCl) is strongly improved compared to a bare GCE. The experimental parameters such as solution pH value, scan rate, stability, concentration, reproducibility and repeatability were optimized. Response is linear in the 10 to 100 nM TRP concentration range, the limit of detection is 1.2 nM, and the sensitivity is 2.59 μA·nM−1·cm−2. The electrode was applied to the determination of TRP in spiked real samples and gave satisfactory results.

Schematic presentation of the preparation of a moss ball like nanocomposite consisting of cerium-doped ZnO and functionalized MWCNTs. cerium-Deposited on a on glassy carbon electrode, it enables nanomolar detection of L-tryptophan by differential pulse voltammetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5

Similar content being viewed by others

References

  1. Kochen W, Steinhart H (eds) (1994) L-Tryptophan: current prospects in medicine and drug safety. Walter de Gruyter, Berlin

    Google Scholar 

  2. Peng Z, Jiang Z, Huang X, Li Y (2016) A novel electrochemical sensor of tryptophan based on silver nanoparticles/metal–organic framework composite modified glassy carbon electrode. RSC Adv 6:13742–13748. https://doi.org/10.1039/C5RA25251B

    Article  CAS  Google Scholar 

  3. Prabhu P, Babu RS, Narayanan SS (2011) Electrocatalytic oxidation of L-tryptophan using copper hexacyanoferrate film modified gold nanoparticle graphite-wax electrode. Colloids Surf B 87:103–108. https://doi.org/10.1016/j.colsurfb.2011.05.008

    Article  CAS  Google Scholar 

  4. Aslanoglu M, Kutluay A, Goktas S, Karabulut S (2009) Voltammetric behaviour of levodopa and its quantification in pharmaceuticals using a β-cyclodextrine doped poly (2, 5-diaminobenzenesulfonic acid) modified electrode. J Chem Sci 121:209–215

    Article  CAS  Google Scholar 

  5. Shahrokhian S, Asadian E (2009) Electrochemical determination of L-dopa in the presence of ascorbic acid on the surface of the glassy carbon electrode modified by a bilayer of multi-walled carbon nanotube and poly -pyrrole doped with tiron. J Electroanal Chem 636:40–46. https://doi.org/10.1016/j.jelechem.2009.09.010

    Article  CAS  Google Scholar 

  6. Ensafi AA, Arabzadeh A, Karimi-Maleh H (2010) Sequential determination of benserazide and levodopa by voltammetric method using chloranil as a mediator. J Braz Chem Soc 21:1572–1580. https://doi.org/10.1590/S0103-50532010000800024

    Article  CAS  Google Scholar 

  7. Cimitan S, Albonetti S, Forni L, Peri F, Lazzari D (2009) Solvothermal synthesis and properties control of doped ZnO nanoparticles. J Colloid Interface Sci 329:73–80. https://doi.org/10.1016/j.jcis.2008.09.060

    Article  CAS  Google Scholar 

  8. Asif M. H, Elinder F, Willander M (2011) Electrochemical biosensors based on ZnO nanostructures to measure intracellular metal ions and glucose. J Anal Bioanal Tech. https://doi.org/10.4172/2155-9872.S7-003

  9. He Y, Yang B, Cheng G (2004) On the oxidative coupling of methane with carbon dioxide over CeO 2/ZnO nanocatalysts. Catal Today 98:595–600. https://doi.org/10.1016/j.cattod.2004.09.014

    Article  CAS  Google Scholar 

  10. Ahmed SM, Szymanski P, El-Nadi LM, El-Sayed MA (2014) Energy-transfer efficiency in Eu-doped ZnO thin films: The effects of oxidative annealing on the dynamics and the intermediate defect states. ACS Appl Mater Interfaces 6:1765–1772. https://doi.org/10.1021/am404662k

    Article  CAS  Google Scholar 

  11. Dar GN, Umar A, Zaidi SA, Ibrahim AA, Abaker M, Baskoutas S, Al-Assiri MS (2012) Ce-doped ZnO nanorods for the detection of hazardous chemical. Sensors Actuators B Chem 173:72–78. https://doi.org/10.1016/j.snb.2012.06.001

    Article  CAS  Google Scholar 

  12. Wang JX, Zhuo Y, Zhou Y, Wang HJ, Yuan R, Chai YQ (2016a) Ceria doped zinc oxide nanoflowers enhanced luminol-based electrochemiluminescence immunosensor for amyloid-β detection. ACS Appl Mater Interfaces 8:12968–12975. https://doi.org/10.1021/acsami.6b00021

    Article  CAS  Google Scholar 

  13. Sumathi C, Muthukumaran P, Radhakrishnan S, Wilson J, Umar A (2014) Controlled growth of single-crystalline nanostructured dendrites of α-Fe 2 O 3 blended with MWCNT: a systematic investigation of highly selective determination of l-dopa. RSC Adv 4:23050–23057. https://doi.org/10.1039/C4RA01451K

    Article  CAS  Google Scholar 

  14. Manikandan PN, Imran H, Dharuman V (2016) Direct glucose sensing and biocompatible properties of a zinc oxide–multiwalled carbon nanotube–poly (vinyl chloride) ternary composite. Anal Methods 8:2691–2697. https://doi.org/10.1039/C6AY00055J

    Article  CAS  Google Scholar 

  15. Xu J, Wang Q, Xuan C, Xia Q, Lin X, Fu Y (2016) Chiral recognition of tryptophan enantiomers based on β-cyclodextrin-platinum nanoparticles/graphene nanohybrids modified electrode. Electroanalysis 28:868–873. https://doi.org/10.1002/elan.201500548

    Article  CAS  Google Scholar 

  16. Chang Y, Wang P, Sun Q, Wang Y, Long Y (2011) Room temperature ferromagnetism of (Mn, Fe) codoped ZnO nanowires synthesized by chemical vapor deposition. J Nanomater 16. https://doi.org/10.1155/2011/367156

  17. Park SB, Sung HJ (2017) Retraction: Enhanced photoluminescence, Raman spectra and field-emission behavior of indium-doped ZnO nanostructures. J Mater Chem C 5:4336–4336. https://doi.org/10.1039/c3tc00082f

    Article  CAS  Google Scholar 

  18. Dai K, Liang C, Dai J, Lu L, Zhu G, Liu Z et al (2014) High-yield synthesis of carbon nanotube–porous nickel oxide nanosheet hybrid and its electrochemical capacitance performance. Mater Chem Phys 143:1344–1351. https://doi.org/10.1016/j.matchemphys.2013.11.045

    Article  CAS  Google Scholar 

  19. Priya T, Dhanalakshmi N, Thinakaran N (2017) Electrochemical behavior of Pb (II) on a heparin modified chitosan/graphene nanocomposite film coated glassy carbon electrode and its sensitive detection. Int J Biol Macromol 104:672–680. https://doi.org/10.1016/j.ijbiomac.2017.06.082

    Article  CAS  Google Scholar 

  20. Wang Y, Ouyang X, Ding Y, Liu B, Xu D, Liao L (2016b) An electrochemical sensor for determination of tryptophan in the presence of DA based on poly (L-methionine)/graphene modified electrode. RSC Adv 6:10662–10669. https://doi.org/10.1039/C5RA24116B

    Article  CAS  Google Scholar 

  21. Jin GP, Lin XQ (2004) The electrochemical behavior and amperometric determination of tyrosine and tryptophan at a glassy carbon electrode modified with butyrylcholine. Electrochem Commun 6:454–460. https://doi.org/10.1016/j.elecom.2004.03.006

    Article  CAS  Google Scholar 

  22. Xu J, Yuan Y, Li W, Deng P, Deng J (2011) Carbon paste electrode modified with a binuclear manganese complex as a sensitive voltammetric sensor for tryptophan. Microchim Acta 174:239. https://doi.org/10.1007/s00604-011-0619-y

    Article  CAS  Google Scholar 

  23. Shahrokhian S, Fotouhi L (2007) Carbon paste electrode incorporating multi-walled carbon nanotube/cobalt salophen for sensitive voltammetric determination of tryptophan. Sensors Actuators B Chem 123:942–949. https://doi.org/10.1016/j.snb.2006.10.053

    Article  CAS  Google Scholar 

  24. Fan Y, Liu JH, Lu HT, Zhang Q (2011) Electrochemistry and voltammetric determination of L-tryptophan and L-tyrosine using a glassy carbon electrode modified with a Nafion/TiO2-graphene composite film. Microchim Acta 173:241–247

    Article  CAS  Google Scholar 

  25. Xu CX, Huang KJ, Fan Y, Wu ZW, Li J, Gan T (2012) Simultaneous electrochemical determination of dopamine and tryptophan using a TiO 2-graphene/poly (4-aminobenzenesulfonic acid) composite film based platform. Mater Sci Eng C 32:969–974. https://doi.org/10.1016/j.msec.2012.02.022

    Article  CAS  Google Scholar 

  26. Feng W, Liu C, Lu S, Zhang C, Zhu X, Liang Y, Nan J (2014) Electrochemical chiral recognition of tryptophan using a glassy carbon electrode modified with β-cyclodextrin and graphene. Microchim Acta 181:501–509. https://doi.org/10.1007/s00604-014-1174-0

    Article  CAS  Google Scholar 

  27. Wu FH, Zhao GC, Wei XW, Yang Z (2004) Electrocatalysis of tryptophan at multi-walled carbon nanotube modified electrode. Microchim Acta 144:243–247. https://doi.org/10.1007/s00604-003-0133-y

    Article  CAS  Google Scholar 

  28. Han J, Wang Q, Zhai J, Han L, Dong S (2015) An amperometric sensor for detection of tryptophan based on a pristine multi-walled carbon nanotube/graphene oxide hybrid. Analyst 140:5295–5300. https://doi.org/10.1039/C5AN00410A

    Article  CAS  Google Scholar 

  29. Guo Y, Guo S, Fang Y, Dong S (2010) Gold nanoparticle/carbon nanotube hybrids as an enhanced material for sensitive amperometric determination of tryptophan. Electrochim Acta 55:3927–3931. https://doi.org/10.1016/j.electacta.2010.02.024

    Article  CAS  Google Scholar 

  30. Kumar JV, Karthik R, Chen SM, Marikkani S, Elangovan A, Muthuraj V (2017) Green synthesis of a novel flower-like cerium vanadate microstructure for electrochemical detection of tryptophan in food and biological samples. J Colloid Interface Sci 496:78–86. https://doi.org/10.1016/j.jcis.2017.02.009

    Article  CAS  Google Scholar 

  31. Thomas T, Mascarenhas RJ, D’Souza OJ, Martis P, Dalhalle J, Swamy BK (2013) Multi-walled carbon nanotube modified carbon paste electrode as a sensor for the amperometric detection of L-tryptophan in biological samples. J Colloid Interface Sci 402:223–229. https://doi.org/10.1016/j.jcis.2013.03.059

    Article  CAS  Google Scholar 

  32. Zhu S, Zhang J, Zhao XE, Wang H, Xu G, You J (2014) Electrochemical behavior and voltammetric determination of L-tryptophan and L-tyrosine using a glassy carbon electrode modified with single-walled carbon nanohorns. Microchim Acta 181:445–451. https://doi.org/10.1007/s00604-013-1138-9

    Article  CAS  Google Scholar 

  33. Li W, Li C, Kuang Y, Deng P, Zhang S, Xu J (2012) A carbon paste electrode modified with a cobalt (II) coordination polymer for the direct voltammetric determination of tryptophan. Microchim Acta 176:455–461. https://doi.org/10.1007/s00604-011-0740-y

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the SERB (Science Engineering Research Board), India, for the financial support of this work under the File No. EMR/2014/ 000020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thinakaran Narayanasamy.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 2.62 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naganathan, D., Thangamani, P., Selvam, T. et al. Ce doped ZnO/f-MWCNT moss ball like nanocomposite: a strategy for high responsive current detection of L-tryptophan. Microchim Acta 185, 96 (2018). https://doi.org/10.1007/s00604-017-2641-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-017-2641-1

Keywords

Navigation