Skip to main content
Log in

Sensitive immunosensing of the carcinoembryonic antigen utilizing aptamer-based in-situ formation of a redox-active heteropolyacid and rolling circle amplification

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A highly sensitive electrochemical scheme for the detection of the cancer biomarker carcinoembryonic antigen (CEA) is reported. An aptamer-based formation of redox-active molybdophosphate is combined with rolling circle amplification (RCA). Gold nanoparticles (AuNPs) were utilized as supporting matrix for the aptamer and the primer to increase the primer/aptamer loading. The formation of a sandwich structure of anti-CEA/CEA/AuNP − aptamer-primer onto a glassy carbon electrode surface enabled an effective RCA reaction. Square wave voltammetry was applied to record the current signal at a peak potential of 0.18 V vs. Ag/AgCl. Compared to the immunosensor without RCA, the sensitivity of the immunosensor with RCA is increased by about a factor of 6. In the latter case, a wider linear range was obtained for the determination of CEA (from 0.5 pg mL−1 to 1 ng mL−1) with a detection limit as low as 0.1 pg mL−1. The practical applicability of the method was studied by analyzing CEA in human serum samples. The results were found to be in good agreement with those obtained by a reference method. Conceivably, the method can be applied to other DNA amplifications and therefore has the potential of finding wide applications.

Schematic of an electrochemical aptamer based method for the detection of the cancer biomarker carcinoembryonic antigen (CEA). An aptamer generated electrochemical current technique is coupled to rolling circle amplification (RCA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gotrik MR, Feagin TA, Csordas AT, Nakamoto MA, Soh HT (2016) Advancements in Aptamer discovery technologies. Acc Chem Res 49(9):1903–1910

    Article  CAS  Google Scholar 

  2. Kim YS, Raston NHA, Gu MB (2016) Aptamer-based nanobiosensors. Biosens Bioelectron 76:2–19

    Article  Google Scholar 

  3. Guo Q, Li X, Shen C, Zhang S, Qi H, Li T, Yang M (2015) Electrochemical immunoassay for the protein biomarker mucin 1 and for MCF-7 cancer cells based on signal enhancement by silver nanoclusters. Microchim Acta 182(7–8):1483–1489

    Article  CAS  Google Scholar 

  4. Quan H, Zuo C, Li T, Liu Y, Li M, Zhong M, Zhang Y, Qi H, Yang M (2015) Electrochemical detection of carcinoembryonic antigen based on silver nanocluster/horseradish peroxidase nanocomposite as signal probe. Electrochim Acta 176:893–897

    Article  CAS  Google Scholar 

  5. Jin H, Gui R, Gong J, Huang W (2017) Aptamer and 5-fluorouracil dual-loading Ag2S quantum dots used as a sensitive label-free probe for near-infrared photoluminescence turn-on detection of CA125 antigen. Biosens Bioelectron 92:378–384

    Article  CAS  Google Scholar 

  6. Zhang X, Zhang R, Yang A, Wang Q, Kong R, Qu F (2017) Aptamer based photoelectrochemical determination of tetracycline using a spindle-like ZnO-CdS@au nanocomposite. Microchim Acta. https://doi.org/10.1007/s00604-017-2477-8

  7. Kong R, Zhang X, Ding L, Yang D, Qu F (2017) Label-free fluorescence turn-on aptasensor for prostate-specific antigen sensing based on aggregation-induced emission–silica nanospheres. Anal Bioanal Chem 409:5757–5765

    Article  CAS  Google Scholar 

  8. Dhiman A, Kalra P, Bansal V, Bruno JG, Sharma TK (2017) Aptamer-based point-of-care diagnostic platforms. Sensors Actuators B Chem 246:535–553

    Article  CAS  Google Scholar 

  9. Lee J, Icoz K, Roberts A, Ellington AD, Savran CA (2010) Diffractometric detection of proteins using microbead-based rolling circle amplification. Anal Chem 82(1):197–202

    Article  CAS  Google Scholar 

  10. Mohsen MG, Kool ET (2016) The discovery of rolling circle amplification and rolling circle transcription. Acc Chem Res 49(11):2540–2550

    Article  CAS  Google Scholar 

  11. Tang Y, Zhang X-L, Tang L-J, Yu R-Q, Jiang J-H (2017) In situ imaging of individual mRNA mutation in single cells using ligation-mediated branched hybridization chain reaction (LigationbHCR). Anal Chem 89(6):3445–3451

    Article  CAS  Google Scholar 

  12. Zhang S, Wang K, Li K-B, Shi W, Jia W-P, Chen X, Sun T, Han D-M (2017) A DNA-stabilized silver nanoclusters/graphene oxide-based platform for the sensitive detection of DNA through hybridization chain reaction. Biosens Bioelectron 91:374–379

    Article  CAS  Google Scholar 

  13. Cao L, Cui X, Hu J, Li Z, Choi JR, Yang Q, Lin M, Ying H, Xu F (2017) Advances in digital polymerase chain reaction (dPCR) and its emerging biomedical applications. Biosens Bioelectron 90:459–474

    Article  CAS  Google Scholar 

  14. Ali MM, Li F, Zhang Z, Zhang K, Kang D-K, Ankrum JA, Le XC, Zhao W (2014) Rolling circle amplification: a versatile tool for chemical biology, materials science and medicine. Chem Soc Rev 43(10):3324–3341

    Article  CAS  Google Scholar 

  15. Huang J, Li X-Y, Du Y-C, Zhang L-N, Liu K-K, Zhu L-N, Kong D-M (2017) Sensitive fluorescent detection of DNA methyltransferase using nicking endonuclease-mediated multiple primers-like rolling circle amplification. Biosens Bioelectron 91:417–423

    Article  CAS  Google Scholar 

  16. Teng J, Ye Y, Yao L, Yan C, Cheng K, Xue F, Pan D, Li B, Chen W (2017) Rolling circle amplification based amperometric aptamer/immuno hybrid biosensor for ultrasensitive detection of Vibrio Parahaemolyticus. Microchim Acta 184:3477–3485

    Article  CAS  Google Scholar 

  17. Cheng X, Yu X, Chen L, ZHang H, Wu Y, Fu F (2017) Visual detection of ultra-trace levels of uranyl ions using magnetic bead-based DNAzyme recognition in combination with rolling circle amplification. Microchim Acta. https://doi.org/10.1007/s00604-017-2472-0

  18. Gu H, Hao L, Duan N, Wu S, Xia Y, Ma X, Wang Z (2017) A competitive fluorescent aptasensor for okadaic acid detection assisted by rolling circle amplification. Microchim Acta 184(8):2893–2899

    Article  CAS  Google Scholar 

  19. Li X, Xu X, Song J, Xue Q, Li C, Jiang W (2017) Sensitive detection of T4 polynucleotide kinase activity based on multifunctional magnetic probes and polymerization nicking reactions mediated hyperbranched rolling circle amplification. Biosens Bioelectron 91:631–636

    Article  CAS  Google Scholar 

  20. Shi H, Mao X, Chen X, Wang Z, Wang K, Zhu X (2017) The analysis of proteins and small molecules based on sterically tunable nucleic acid hyperbranched rolling circle amplification. Biosens Bioelectron 91:136–142

    Article  CAS  Google Scholar 

  21. He Y, Yang X, Yuan R, Chai Y (2017) "off" to "on" surface-enhanced Raman spectroscopy platform with padlock probe-based exponential rolling circle amplification for ultrasensitive detection of MicroRNA 155. Anal Chem 89(5):2866–2872

    Article  CAS  Google Scholar 

  22. Li H, Xu J, Wang Z, Wu Z-S, Jia L (2016) Increasingly branched rolling circle amplification for the cancer gene detection. Biosens Bioelectron 86:1067–1073

    Article  CAS  Google Scholar 

  23. Yang J, Tang M, Wei D, Cheng W, Zhang Y, Yan Y (2016) Electrochemical strategy for ultrasensitive detection of microRNA based on MNAzyme-mediated rolling circle amplification on a gold electrode. Microchim Acta 183:3061–3067

    Article  CAS  Google Scholar 

  24. Shen B, Li J, Cheng W, Yan R, Tang R, Li Y, Ju H, Ding S (2015) Electrochemical aptasensor for highly sensitive determination of cocaine using a supramolecular aptamer and rolling circle amplification. Microchim Acta 182:361–367

    Article  CAS  Google Scholar 

  25. Xu Z, Yin H, Tian Z, Zhou Y, Ai S (2014) Electrochemical immunoassays for the detection the activity of DNA methyltransferase by using the rolling circle amplification technique. Microchim Acta 181:471–477

    Article  CAS  Google Scholar 

  26. Zhu Y, Wang H, Wang L, Zhu J, Jiang W (2016) Cascade signal amplification based on copper nanoparticle-reported rolling circle amplification for ultrasensitive electrochemical detection of the prostate cancer biomarker. ACS Appl Mater Interfaces 8(4):2573–2581

    Article  CAS  Google Scholar 

  27. Qiu Z, Shu J, He Y, Lin Z, Zhang K, Lv S, Tang D (2017) CdTe/CdSe quantum dot-based fluorescent aptasensor with hemin/G-quadruplex DNzyme for sensitive detection of lysozyme using rolling circle amplification and strand hybridization. Biosens Bioelectron 87:18–24

    Article  CAS  Google Scholar 

  28. Hu L, Hu S, Guo L, Shen C, Yang M, Rasooly A (2017) DNA generated electric current biosensor. Anal Chem 89(4):2547–2552

    Article  CAS  Google Scholar 

  29. Si Z, Xie B, Chen Z, Tang C, Li T, Yang M (2017) Electrochemical aptasensor for the cancer biomarker CEA based on aptamer induced current due to formation of molybdophosphate. Microchim Acta 184(9):3215–3221

    Article  CAS  Google Scholar 

  30. Qiu Z, Shu J, Tang D (2017) Bioresponsive release system for visual fluorescence detection of carcinoembryonic antigen from mesoporous silica nanocontainers mediated optical color on quantum dot-enzyme-impregnated paper. Anal Chem 89:5152–5160

    Article  CAS  Google Scholar 

  31. Shen C, Li X, Rasooly A, Guo L, Zhang K, Yang M (2016) A single electrochemical biosensor for detecting the activity and inhibition of both protein kinase and alkaline phosphatase based on phosphate ions induced deposition of redox precipitates. Biosens Bioelectron 85:220–225

    Article  CAS  Google Scholar 

  32. Shu J, Qiu Z, Lin Z, Cai G, Yang H, Tang D (2016) Semiautomated support photoelectrochemical immunosensing platform for portable and high-throughput immunoassay based on au nanocrystal decorated specific crystal facets BiVO4 photoanode. Anal Chem 88:12539–12546

    Article  CAS  Google Scholar 

  33. Shu J, Qiu Z, Zhou Q, Lin Y, Lu M, Tang D (2016) Enzymatic Oxydate-triggered self-illuminated Photoelectrochemical sensing platform for portable immunoassay using digital multimeter. Anal Chem 88:2958–2966

    Article  CAS  Google Scholar 

  34. Cheng W, Yan F, Ding L, Ju H, Yin Y (2010) Cascade signal amplification strategy for subattomolar protein detection by rolling circle amplification and quantum dots tagging. Anal Chem 82(8):3337–3342

    Article  CAS  Google Scholar 

  35. Xie S, Yuan Y, Chai Y, Yuan R (2015) Tracing phosphate ions generated during loop-mediated isothermal amplification for electrochemical detection of nosema bombycis genomic DNA PTP1. Anal Chem 87(20):10268–10274

    Article  CAS  Google Scholar 

  36. Qu F, Yang M, Rasooly A (2016) Dual signal amplification electrochemical biosensor for monitoring the activity and inhibition of the Alzheimer’s related protease β-Secretase. Anal Chem 88(21):10559–10565

    Article  CAS  Google Scholar 

  37. Huang Y, Tang C, Liu J, Cheng J, Si Z, Li T, Yang M (2017) Signal amplification strategy for electrochemical immunosensing based on a molybdophosphate induced enhanced redox current on the surface of hydroxyapatite nanoparticles. Microchim Acta 184(3):855–861

    Article  CAS  Google Scholar 

  38. Sun J, Tian D, Guo Q, Zhang L, Jiang W, Yang M (2016) A label-free electrochemical immunosensor for the detection of cancer biomarker alpha-fetoprotein (AFP) based on hydroxyapatite induced redox current. Anal Methods 8(40):7319–7323

    Article  CAS  Google Scholar 

  39. Pal S, Bhand S (2015) Zinc oxide nanoparticle-enhanced ultrasensitive chemiluminescence immunoassay for the carcinoma embryonic antigen. Microchim Acta 182(9–10):1643–1651

    Article  CAS  Google Scholar 

  40. Shi G-F, Cao J-T, Zhang J-J, Huang K-J, Liu Y-M, Chen Y-H, Ren S-W (2014) Aptasensor based on tripetalous cadmium sulfidegraphene electrochemiluminescence for the detection of carcinoembryonic antigen. Analyst 139(22):5827–5834

    Article  CAS  Google Scholar 

  41. Wang Y-L, Cao J-T, Chen Y-H, Liu Y-M (2016) A label-free electrochemiluminescence aptasensor for carcinoembryonic antigen detection based on electrodeposited ZnS-CdS on MoS2 decorated electrode. Anal Methods 8(26):5242–5247

    Article  CAS  Google Scholar 

  42. Xu TS, Li XY, Xie ZH, Li XG, Zhang HY (2015) Poly(o-phenylenediamine) nanosphere-conjugated capture antibody immobilized on a glassy carbon electrode for electrochemical immunoassay of carcinoembryonic antigen. Microchim Acta 182(15–16):2541–2549

    Article  CAS  Google Scholar 

  43. Feng DX, Lu XC, Dong X, Ling YY, Zhang YZ (2013) Label-free electrochemical immunosensor for the carcinoembryonic antigen using a glassy carbon electrode modified with electrodeposited Prussian blue, a graphene and carbon nanotube assembly and an antibody immobilized on gold nanoparticles. Microchim Acta 180(9–10):767–774

    Article  CAS  Google Scholar 

  44. Yang XM, Zhuo Y, Zhu SS, Luo YW, Feng YJ, Xu Y (2015) Selectively assaying CEA based on a creative strategy of gold nanoparticles enhancing silver nanoclusters' fluorescence. Biosens Bioelectron 64:345–351

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the support of this work by the National Natural Science Foundation of China (No. 21575165), Tianjin Clinical Research Center for Organ Transplantation Grant (No. 15ZXLCSY00070) and Science and technology fund of Tianjin Municipal Health Bureau (No. 2013 KZ034).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wentao Jiang or Minghui Yang.

Ethics declarations

The author(s) declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, W., Liu, L., Zhang, L. et al. Sensitive immunosensing of the carcinoembryonic antigen utilizing aptamer-based in-situ formation of a redox-active heteropolyacid and rolling circle amplification. Microchim Acta 184, 4757–4763 (2017). https://doi.org/10.1007/s00604-017-2522-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2522-7

Keywords

Navigation