Skip to main content

Advertisement

Log in

Signal amplification strategy for electrochemical immunosensing based on a molybdophosphate induced enhanced redox current on the surface of hydroxyapatite nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a strategy for improving the sensitivity of electrochemical immunoassays that is based on the use of hydroxyapatite nanoparticles (HAP-NPs). Signal generation is based on the reaction of phosphate groups present in HAP-NPs with molybdate to form a redox-active molybdophosphate precipitate on the surface of the electrode that facilitates the generation of an electrochemical current. The cancer biomarker α-fetoprotein (AFP) was chosen as a model antigen (analyte). Antibodies against AFP (Ab2) were immobilized on the HAP-NPs to obtain the signal probe. The reaction of HAP-NPs with molybdate and the performance of the immunoelectrode were characterized in detail. Based on this signal amplification approach, an immunoassay was worked out that has a linear range that extends from 0.1 pg·mL−1 to 1 ng·mL−1 and a detection limit as low as 50 fg·mL−1. The assay was successfully applied to the determination of AFP in serum samples. In our perception, this new signal amplification scheme can be adapted to numerous other immunoassays.

Schematic of the electrochemical assay for the cancer biomarker α-fetoprotein based on hydroxyapatite (HAP) nanoparticles as signal probe. The reaction of HAP nanoparticles with molybdate leads to the formation of a redox-active molybdophosphate precipitate on the electrode surface and generates an electrochemical current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhao Y, Zheng Y, Zhao C, You J, Qu F (2015) Hollow PDA-Au nanoparticles-enabled signal amplification for sensitive nonenzymatic colorimetric immunodetection of carbohydrate antigen 125. Biosensor Bioelectron 71:200–206

    Article  CAS  Google Scholar 

  2. Luo J, Rasooly A, Wang L, Zeng K, Shen C, Qian P, Yang M, Qu F (2015) Fluorescent turn-on determination of the activity of peptidases using peptide templated gold nanoclusters. Microchim Acta 183(2):605–610

    Article  Google Scholar 

  3. Qu FL, Yang MH, Rasooly A (2016) Dual signal amplification electrochemical biosensor for monitoring the activity and inhibition of the alzheimer’s related protease β‑secretase. Anal Chem 88:10559–10565

  4. Shen C, Xia X, Hu S, Yang M, Wang J (2015) Silver nanoclusters-based fluorescence assay of protein kinase activity and inhibition. Anal Chem 87(1):693–698

    Article  CAS  Google Scholar 

  5. Guo Q, Li X, Shen C, Zhang S, Qi H, Li T, Yang M (2015) Electrochemical immunoassay for the protein biomarker mucin 1 and for MCF-7 cancer cells based on signal enhancement by silver nanoclusters. Microchim Acta 182(7–8):1483–1489

    Article  CAS  Google Scholar 

  6. Pei H, Zhu S, Yang M, Kong R, Zheng Y, Qu F (2015) Graphene oxide quantum dots@silver core-shell nanocrystals as turn-on fluorescent nanoprobe for ultrasensitive detection of prostate specific antigen. Biosensor Bioelectron 74:909–914

    Article  CAS  Google Scholar 

  7. Quan H, Zuo C, Li T, Liu Y, Li M, Zhong M, Zhang Y, Qi H, Yang M (2015) Electrochemical detection of carcinoembryonic antigen based on silver nanocluster/horseradish peroxidase nanocomposite as signal probe. Electrochim Acta 176:893–897

    Article  CAS  Google Scholar 

  8. Zhao Y, Zheng Y, Kong R, Xia L, Qu F (2016) Ultrasensitive electrochemical immunosensor based on horseradish peroxidase (HRP)-loaded silica-poly(acrylic acid) brushes for protein biomarker detection. Biosensor Bioelectron 75:383–388

    Article  CAS  Google Scholar 

  9. Gao Z-D, Guan F-F, Li C-Y, Liu H-F, Song Y-Y (2013) Signal-amplified platform for electrochemical immunosensor based on TiO2 nanotube arrays using a HRP tagged antibody-Au nanoparticles as probe. Biosensor Bioelectron 41:771–775

    Article  CAS  Google Scholar 

  10. Kong R-M, Ding L, Wang Z, You J, Qu F (2015) A novel aptamer-functionalized MoS2 nanosheet fluorescent biosensor for sensitive detection of prostate specific antigen. Anal Bioanal Chem 407(2):369–377

    Article  CAS  Google Scholar 

  11. Qu F, Zhang Y, Rasooly A, Yang M (2014) Electrochemical biosensing platform using hydrogel prepared from ferrocene modified amino acid as highly efficient immobilization matrix. Anal Chem 86(2):973–976

    Article  CAS  Google Scholar 

  12. Ding Y, Li D, Li B, Zhao K, Du W, Zheng J, Yang M (2013) A water-dispersible, ferrocene-tagged peptide nanowire for amplified electrochemical immunosensing. Biosensor Bioelectron 48:281–286

    Article  CAS  Google Scholar 

  13. Jiang W, Li T, Qu F, Ding L, Shen Z, Yang M (2013) Electrochemical immunosensor for the detection of interleukin-17 based on Cd2+ incorporated polystyrene spheres. Sens Actuator B Chem 185:658–662

    Article  CAS  Google Scholar 

  14. Hou Y, Li T, Huang H, Quan H, Miao X, Yang M (2013) Electrochemical immunosensor for the detection of tumor necrosis factor α based on hydrogel prepared from ferrocene modified amino acid. Sens Actuator B Chem 182:605–609

    Article  CAS  Google Scholar 

  15. Li H, Wei Q, Wang G, Yang M, Qu F, Qian Z (2011) Sensitive electrochemical immunosensor for cancer biomarker with signal enhancement based on nitrodopamine-functionalized iron oxide nanoparticles. Biosensor Bioelectron 26(6):3044–3049

    Article  CAS  Google Scholar 

  16. Zhang Y, Dai W, Liu F, Li L, Li M, Ge S, Yan M, Yu J (2013) Ultrasensitive electrochemiluminescent immunosensor based on dual signal amplification strategy of gold nanoparticles-dotted graphene composites and CdTe quantum dots coated silica nanoparticles. Anal Bioanal Chem 405(14):4921–4929

    Article  CAS  Google Scholar 

  17. Wang H, Li X, Mao K, Li Y, Du B, Zhang Y, Wei Q (2014) Electrochemical immunosensor for alpha-fetoprotein detection using ferroferric oxide and horseradish peroxidase as signal amplification labels. Anal Biochem 465:121–126

    Article  CAS  Google Scholar 

  18. Palmer LC, Newcomb CJ, Kaltz SR, Spoerke ED, Stupp SI (2008) Biomimetic Systems for Hydroxyapatite Mineralization Inspired by Bone and Enamel. Chem Rev 108(11):4754–4783

    Article  CAS  Google Scholar 

  19. Syamchand SS, Sony G (2015) Multifunctional hydroxyapatite nanoparticles for drug delivery and multimodal molecular imaging. Microchim Acta 182(9–10):1567–1589

    Article  CAS  Google Scholar 

  20. Hao X, Hu X, Zhang C, Chen S, Li Z, Yang X, Liu H, Jia G, Liu D, Ge K, Liang X-J, Zhang J (2015) Hybrid mesoporous silica-based drug carrier nanostructures with improved degradability by hydroxyapatite. ACS Nano 9(10):9614–9625

    Article  CAS  Google Scholar 

  21. Lu L, Zhang L, Zhang X, Huan S, Shen G, Yu R (2010) A novel tyrosinase biosensor based on hydroxyapatite-chitosan nanocomposite for the detection of phenolic compounds. Anal Chim Acta 665(2):146–151

    Article  CAS  Google Scholar 

  22. Gao X, Song J, Ji P, Zhang X, Li X, Xu X, Wang M, Zhang S, Deng Y, Deng F, Wei S (2016) Polydopamine-templated hydroxyapatite reinforced Polycaprolactone composite nanofibers with enhanced Cytocompatibility and osteogenesis for bone tissue engineering. ACS Appl Mater Interfaces 8(5):3499–3515

    Article  CAS  Google Scholar 

  23. Duan H, Ma Y, Liu X, Hao L, Zhao N (2015) Hierarchically nanostructured hydroxyapatite microspheres as drug delivery carriers and their effects on cell viability. RSC Adv 5(101):83522–83529

    Article  CAS  Google Scholar 

  24. Xie S, Yuan Y, Chai Y, Yuan R (2015) Tracing phosphate ions generated during loop-mediated isothermal amplification for electrochemical detection ofNosema bombycisGenomic DNA PTP1. Anal Chem 87(20):10268–10274

    Article  CAS  Google Scholar 

  25. Shen C, Li X, Rasooly A, Guo L, Zhang K, Yang M (2016) A single electrochemical biosensor for detecting the activity and inhibition of both protein kinase and alkaline phosphatase based on phosphate ions induced deposition of redox precipitates. Biosensor Bioelectron 85:220–225

    Article  CAS  Google Scholar 

  26. Sun J, Tian D, Guo Q, Zhang L, Jiang W, Yang M (2016) A label free electrochemical immunosensor for the detection of cancer biomarker a-fetoprotein (AFP) based on hydroxyapatite induced redox current. Anal Methods 8:7319–7323

  27. Wu YF, Chen CL, Liu SQ (2009) Enzyme-functionalized silica nanoparticles as sensitive labels in biosensing. Anal Chem 81:1600–1607

    Article  CAS  Google Scholar 

  28. Ball D, Rose E, Alpert E (1992) Alpha-fetoprotein levels in normal adults. Am J Med Sci 303:157–159

    Article  CAS  Google Scholar 

  29. Lai WQ, Zhuang JY, Tang J, Chen GN, Tang DP (2012) One-step electrochemical immunosensing for simultaneous detection of two biomarkers using thionine and ferrocene as distinguishable signal tags. Microchim Acta 178(3–4):357–365

    Article  CAS  Google Scholar 

  30. Peng SS, Zhang XL (2012) Electrodeposition of CdSe quantum dots and its application to an electrochemiluminescence immunoassay for alpha-fetoprotein. Microchim Acta 178(3–4):323–330

    Article  CAS  Google Scholar 

  31. Li Y, Yuan R, Chai YQ, Zhuo Y, Su HL, Zhang YX (2014) Horseradish peroxidase-loaded nanospheres attached to hollow gold nanoparticles as signal enhancers in an ultrasensitive immunoassay for alpha-fetoprotein. Microchim Acta 181(5–6):679–685

    Article  CAS  Google Scholar 

  32. Liu N, Feng F, Liu ZM, Ma ZF (2015) Porous platinum nanoparticles and PdPt nanocages for use in an ultrasensitive immunoelectrode for the simultaneous determination of the tumor markers CEA and AFP. Microchim Acta 182(5–6):1143–1151

    Article  CAS  Google Scholar 

  33. Liu X, Jiang H, Fang Y, Zhao W, Wang NY, Zhang G (2015) Quantum dots based potential-resolution dual-targets electrochemiluminescent immunosensor for subtype of tumor marker and its serological evaluation. Anal Chem 87:9163–9169

    Article  CAS  Google Scholar 

  34. Shen C, Su J, Li X, Luo J, Yang M (2015) Electrochemical sensing platform based on Pd–Au bimetallic cluster for non-enzymatic detection of glucose. Sens Actuator B Chem 209:695–700

    Article  CAS  Google Scholar 

  35. Sun Z, Fu H, Deng L, Wang J (2013) Redox-active thionine–graphene oxide hybrid nanosheet: one-pot, rapid synthesis, and application as a sensing platform for uric acid. Anal Chim Acta 761:84–91

    Article  CAS  Google Scholar 

  36. Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, Nguyen ST, Ruoff RS (2007) Nature 48:457–460

    Article  Google Scholar 

  37. Zhao L, Li S, He J, Tian G, Wei Q, Li H (2013) Enzyme-free electrochemical immunosensor configured with Au–Pd nanocrystals and N-doped graphene sheets for sensitive detection of AFP. Biosensor Bioelectron 49:222–225

    Article  CAS  Google Scholar 

  38. Zhou H, Gan N, Li T, Cao Y, Zeng S, Zheng L, Guo Z (2012) The sandwich-type electrochemiluminescence immunosensor for α-fetoprotein based on enrichment by Fe3O4-Au magnetic nano probes and signal amplification by CdS-Au composite nanoparticles labeled anti-AFP. Anal Chim Acta 746:107–113

    Article  CAS  Google Scholar 

  39. Gao J, Ma H, Lv X, Yan T, Li N, Cao W, Wei Q (2015) A novel electrochemical immunosensor using β-cyclodextrins functionalized silver supported adamantine-modified glucose oxidase as labels for ultrasensitive detection of alpha-fetoprotein. Anal Chim Acta 893:49–56

    Article  CAS  Google Scholar 

  40. Jiang L, Han J, Li F, Gao J, Li Y, Dong Y, Wei Q (2015) A sandwich-type electrochemical immunosensor based on multiple signal amplification for α-fetoprotein labeled by platinum hybrid multiwalled carbon nanotubes adhered copper oxide. Electrochim Acta 160:7–14

    Article  CAS  Google Scholar 

  41. Parshetti GK, Lin F-H, Doong R-A (2013) Sensitive amperometric immunosensor for α-fetoprotein detection based on multifunctional dumbbell-like Au-Fe3O4 heterostructures. Sens Actuator B Chem 186:34–43

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the support of this work by the National Natural Science Foundation of China (No. 21575165 and No. 81200326) and the Natural Science Foundation of Hunan province (No. 2015JJ1019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ting Li or Minghui Yang.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 169 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Tang, C., Liu, J. et al. Signal amplification strategy for electrochemical immunosensing based on a molybdophosphate induced enhanced redox current on the surface of hydroxyapatite nanoparticles. Microchim Acta 184, 855–861 (2017). https://doi.org/10.1007/s00604-016-2069-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-2069-z

Keywords

Navigation