Skip to main content
Log in

A competitive fluorescent aptasensor for okadaic acid detection assisted by rolling circle amplification

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Okadaic acid (OA) is a low molecular weight marine toxin from shellfish which causes diarrheic shellfish poisoning (DSP). Due to its frequent occurrence, OA has become a serious threat to human health and seafood industry. The authors describe a competitive fluorophore-linked aptamer assay for OA that is based on rolling circle amplification (RCA). It consists of the following steps: (a) The wells of a microplate are modified by fixing the OA aptamer on their surface; (b) The aptamer is hybridized with an aptamer-complementary sequence-primer complex; (c) the RCA reaction is performed; (d) the FAM labelled signal probe is added. OA competes with the detection probe for the immobilized aptamer. After the competitive reaction has occurred, the supernatants containing released detection probes are removed and then read with a microplate reader. This method, unlike in competitive assays where the signals negatively correlate with OA concentrations, has a positive correlation between fluorescence intensity and OA concentration. The optimized assay has a lower detection limit (1 pg·mL−1) and a wider linear range (from 1 pg·mL−1 to 100 ng·mL−1) owning to signal amplification via RCA. It also is highly specific, repeatable, has good recovery and can be used to detect OA in seafood.

Schematic of a microplate assay for okadaic acid assisted by rolling circle amplification (RCA) and using a fluorophore-linked aptamer. The signal intensities are directly proportional to the concentrations of OA. The assay without RCA was also performed and compared to.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tachibana K, Scheuer PJ, Tsukitani Y, Kikuchi H, Van Engen D, Clardy J, Gopichand Y, Schmitz FJ (1981) Okadaic acid, a cytotoxic polyether from two marine sponges of the genus Halichondria. J Am Chem Soc 103(9):2469–2471. doi:10.1021/ja00399a082

    Article  CAS  Google Scholar 

  2. Campàs M, Prieto-Simón B, Marty J-L (2007) Biosensors to detect marine toxins: assessing seafood safety. Talanta 72(3):884–895. doi:10.1016/j.talanta.2006.12.036

    Article  Google Scholar 

  3. Paredes I, Rietjens IMCM, Vieites JM, Cabado AG (2011) Update of risk assessments of main marine biotoxins in the European Union. Toxicon 58(4):336–354. doi:10.1016/j.toxicon.2011.07.001

    Article  CAS  Google Scholar 

  4. Fujiki H, Suganuma M (1993) Tumor promotion by inhibitors of ProteinZ phosphatases 1 and 2A: the Okadaic acid class of compounds. Adv Cancer Res 61:143–194. doi:10.1016/s0065-230x(08)60958-6

    Article  CAS  Google Scholar 

  5. Meštrović V, Pavela-Vrančič M (2003) Inhibition of alkaline phosphatase activity by okadaic acid, a protein phosphatase inhibitor. Biochimie 85(7):647–650. doi:10.1016/s0300-9084(03)00135-4

    Article  Google Scholar 

  6. Valdiglesias V, Prego-Faraldo M, Pásaro E, Méndez J, Laffon B (2013) Okadaic acid: more than a diarrheic toxin. Mar Drugs 11(11):4328–4349. doi:10.3390/md11114328

    Article  Google Scholar 

  7. Kamat PK, Rai S, Swarnkar S, Shukla R, Nath C (2014) Molecular and cellular mechanism of Okadaic acid (OKA)-induced neurotoxicity: a novel tool for Alzheimer’s disease therapeutic application. Mol Neurobiol 50(3):852–865. doi:10.1007/s12035-014-8699-4

    Article  CAS  Google Scholar 

  8. Deeds JR, Wiles K, Heideman GB, White KD, Abraham A (2010) First U.S. report of shellfish harvesting closures due to confirmed okadaic acid in Texas gulf coast oysters. Toxicon 55(6):1138–1146. doi:10.1016/j.toxicon.2010.01.003

    Article  CAS  Google Scholar 

  9. Stabell O, Steffenak I, Aune T (1992) An evaluation of the mouse bioassay applied to extracts of ‘diarrhoetic’shellfish toxins. Food Chem Toxicol 30(2):139–144. doi:10.1016/0278-6915(92)90149-F

    Article  CAS  Google Scholar 

  10. Cañete E, Diogène J (2008) Comparative study of the use of neuroblastoma cells (neuro-2a) and neuroblastoma×glioma hybrid cells (NG108-15) for the toxic effect quantification of marine toxins. Toxicon 52(4):541–550. doi:10.1016/j.toxicon.2008.06.028

    Article  Google Scholar 

  11. Nogueiras MJ, Gago-Martínez A, Paniello AI, Twohig M, James KJ, Lawrence JF (2003) Comparison of different fluorimetric HPLC methods for analysis of acidic polyether toxins in marine phytoplankton. Anal Bioanal Chem 377(7–8):1202–1206. doi:10.1007/s00216-003-2221-6

    Article  CAS  Google Scholar 

  12. Wu Z, Wang B, Sun Y, Liu Y (2015) Improvement of determination method of okadaic acid in shellfish by liquid chromatography-tandem mass spectrometry. Journal of Food Safety and Quality 6(1):265–271

    Google Scholar 

  13. Liu B-H, Hung C-T, Lu C-C, Chou H-N, Yu F-Y (2014) Production of monoclonal antibody for Okadaic acid and its utilization in an ultrasensitive enzyme-linked immunosorbent assay and one-step Immunochromatographic strip. J Agric Food Chem 62(6):1254–1260. doi:10.1021/jf404827s

    Article  CAS  Google Scholar 

  14. Sassolas A, Catanante G, Hayat A, Marty J-L (2011) Development of an efficient protein phosphatase-based colorimetric test for okadaic acid detection. Anal Chim Acta 702(2):262–268. doi:10.1016/j.aca.2011.07.002

    Article  CAS  Google Scholar 

  15. Bunka DHJ, Stockley PG (2006) Aptamers come of age – at last. Nat Rev Microbiol 4(8):588–596. doi:10.1038/nrmicro1458

    Article  CAS  Google Scholar 

  16. Gotrik MR, Feagin TA, Csordas AT, Nakamoto MA, Soh HT (2016) Advancements in aptamer discovery technologies. Acc Chem Res 49(9):1903–1910. doi:10.1021/acs.accounts.6b00283

    Article  CAS  Google Scholar 

  17. Yuan J, Wu S, Duan N, Ma X, Xia Y, Chen J, Ding Z, Wang Z (2014) A sensitive gold nanoparticle-based colorimetric aptasensor for Staphylococcus aureus. Talanta 127:163–168. doi:10.1016/j.talanta.2014.04.013

    Article  CAS  Google Scholar 

  18. Huang Y, Zhang H, Chen X, Wang X, Duan N, Wu S, Xu B, Wang Z (2015) A multicolor time-resolved fluorescence aptasensor for the simultaneous detection of multiplex Staphylococcus aureus enterotoxins in the milk. Biosens Bioelectron 74:170–176. doi:10.1016/j.bios.2015.06.046

    Article  CAS  Google Scholar 

  19. Hao L, Duan N, Wu S, Xu B, Wang Z (2015) Chemiluminescent aptasensor for chloramphenicol based on N-(4-aminobutyl)-N-ethylisoluminol-functionalized flower-like gold nanostructures and magnetic nanoparticles. Anal Bioanal Chem 407(26):7907–7915. doi:10.1007/s00216-015-8957-y

    Article  CAS  Google Scholar 

  20. Li A, Tang L, Song D, Song S, Ma W, Xu L, Kuang H, Wu X, Liu L, Chen X, Xu C (2016) A SERS-active sensor based on heterogeneous gold nanostar core–silver nanoparticle satellite assemblies for ultrasensitive detection of aflatoxinB1. Nano 8(4):1873–1878. doi:10.1039/c5nr08372a

    CAS  Google Scholar 

  21. Mishra RK, Hayat A, Catanante G, Ocaña C, Marty J-L (2015) A label free aptasensor for Ochratoxin a detection in cocoa beans: an application to chocolate industries. Anal Chim Acta 889:106–112. doi:10.1016/j.aca.2015.06.052

    Article  CAS  Google Scholar 

  22. Gu H, Duan N, Wu S, Hao L, Xia Y, Ma X, Wang Z (2016) Graphene oxide-assisted non-immobilized SELEX of okdaic acid aptamer and the analytical application of aptasensor. Sci Rep 6:21665. doi:10.1038/srep21665

    Article  CAS  Google Scholar 

  23. Wang RE, Zhang Y, Cai J, Cai W, Gao T (2011) Aptamer-based fluorescent biosensors. Curr Med Chem 18(27):4175–4184. doi:10.2174/092986711797189637

    Article  CAS  Google Scholar 

  24. Li F, Zhang H, Wang Z, Newbigging AM, Reid MS, Li X-F, Le XC (2015) Aptamers facilitating amplified detection of biomolecules. Anal Chem 87(1):274–292. doi:10.1021/ac5037236

    Article  CAS  Google Scholar 

  25. Fire A, Xu S-Q (1995) Rolling replication of short DNA circles. Proc Nat Acad Sci USA 92(10):4641–4645. doi:10.1073/pnas.92.10.4641

    Article  CAS  Google Scholar 

  26. Shen B, Li J, Cheng W, Yan Y, Tang R, Li Y, Ju H, Ding S (2014) Electrochemical aptasensor for highly sensitive determination of cocaine using a supramolecular aptamer and rolling circle amplification. Microchim Acta 182(1–2):361–367. doi:10.1007/s00604-014-1333-3

    Google Scholar 

  27. Yang J, Tang M, Diao W, Cheng W, Zhang Y, Yan Y (2016) Electrochemical strategy for ultrasensitive detection of microRNA based on MNAzyme-mediated rolling circle amplification on a gold electrode. Microchim Acta 183(11):3061–3067. doi:10.1007/s00604-016-1958-5

    Article  CAS  Google Scholar 

  28. Zou L, Wang Q, Tong M, Li H, Wang J, Hu N, Wang P (2016) Detection of diarrhetic shellfish poisoning toxins using high-sensitivity human cancer cell-based impedance biosensor. Sensors Actuators B Chem 222:205–212. doi:10.1016/j.snb.2015.08.061

    Article  CAS  Google Scholar 

  29. Garibo D, Devic E, Marty J-L, Diogène J, Unzueta I, Blázquez M, Campàs M (2012) Conjugation of genetically engineered protein phosphatases to magnetic particles for okadaic acid detection. J Biotechnol 157(1):89–95. doi:10.1016/j.jbiotec.2011.11.020

    Article  CAS  Google Scholar 

  30. Zhou J, Qiu X, Su K, Xu G, Wang P (2016) Disposable poly (o-aminophenol)-carbon nanotubes modified screen print electrode-based enzyme sensor for electrochemical detection of marine toxin okadaic acid. Sensors Actuators B Chem 235:170–178. doi:10.1016/j.snb.2016.05.067

    Article  CAS  Google Scholar 

  31. Sassolas A, Catanante G, Hayat A, Stewart LD, Elliott CT, Marty JL (2013) Improvement of the efficiency and simplification of ELISA tests for rapid and ultrasensitive detection of okadaic acid in shellfish. Food Control 30(1):144–149. doi:10.1016/j.foodcont.2012.05.028

    Article  CAS  Google Scholar 

  32. Vdovenko MM, Hung C-T, Sakharov IY, Yu F-Y (2013) Determination of okadaic acid in shellfish by using a novel chemiluminescent enzyme-linked immunosorbent assay method. Talanta 116:343–346. doi:10.1016/j.talanta.2013.05.057

    Article  CAS  Google Scholar 

  33. Garibo D, Campbell K, Casanova A, de la Iglesia P, Fernández-Tejedor M, Diogène J, Elliott CT, Campàs M (2014) SPR immunosensor for the detection of okadaic acid in mussels using magnetic particles as antibody carriers. Sensors Actuators B Chem 190:822–828. doi:10.1016/j.snb.2013.09.037

    Article  CAS  Google Scholar 

  34. Eissa S, Ng A, Siaj M, Tavares AC, Zourob M (2013) Selection and identification of DNA aptamers against Okadaic acid for Biosensing application. Anal Chem 85(24):11794–11801. doi:10.1021/ac402220k

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the National Science and Technology Support Program of China (2015BAD17B02), the Key Research and Development Program of Jiangsu Province (BE2016306), the National Natural Science Foundation of China (31401576, 31401575), the Technology R&D Program of Suzhou (SYN201513), the National Grain Special Public-Funded Program of China (201513006), and Synergetic Innovation Center of Food Safety and Quality control of Jiangsu Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhouping Wang.

Ethics declarations

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, H., Hao, L., Duan, N. et al. A competitive fluorescent aptasensor for okadaic acid detection assisted by rolling circle amplification. Microchim Acta 184, 2893–2899 (2017). https://doi.org/10.1007/s00604-017-2293-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2293-1

Keywords

Navigation