Skip to main content

Advertisement

Log in

Dual signal amplification strategy for amperometric aptasensing using hydroxyapatite nanoparticles. Application to the sensitive detection of the cancer biomarker platelet-derived growth factor BB

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a dual signal amplification strategy for improving the sensitivity of electrochemical aptasensor. Hydroxyapatite nanoparticles (HAP-NPs) serve as the support for deposition of the respective aptamer. Both the HAP-NPs and the aptamer contain phosphate groups which can react with molybdate to form a redox-active molybdophosphate precipitate on the surface of a glassy carbon electrode (GCE). On applying a relatively low voltage of 0.21 V (vs. Ag/AgCl), a current is generated whose intensity depends on the concentration of the analyte. The cancer biomarker platelet-derived growth factor BB (PDGF-BB) is chosen as a model antigen (analyte). The assay works by sequential deposition of antibody against PDGF-BB, analyte (PDGF-BB) and anti-PDGF-BB aptamer modified HAP-NPs on the GCE to form a sandwich structure. The amperometric signal is linear in the 0.1 pg.mL−1 to 10 ng.mL−1 PDGF-BB concentration range, with a detection limit as low as 50 fg.mL−1. The assay was successfully applied to the determination of PDGF-BB in serum samples. In our perception, this signal amplification strategy has a wide scope in that it can be adapted to the preparation of other aptasensors for biomarkers and related species.

Schematic of an electrochemical aptasensor based on dual signal amplification strategy. It was applied to the detection of cancer biomarker platelet-derived growth factor BB (PDGF-BB). Hydroxyapatite (HAP) nanoparticles were chosen for the immobilization of aptamers to increase the loading of aptamers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alhadrami HA, Chinnappan R, Eissa S, Rahamn AA, Zourob M (2017) High affinity truncated DNA aptamers for the development of fluorescence based progesterone biosensors. Anal Biochem 525:78–84

    Article  CAS  Google Scholar 

  2. Quan H, Zuo C, Li T, Liu Y, Li M, Zhong M, Zhang Y, Qi H, Yang M (2015) Electrochemical detection of carcinoembryonic antigen based on silver nanocluster/horseradish peroxidase nanocomposite as signal probe. Electrochim Acta 176:893–897

    Article  CAS  Google Scholar 

  3. Gotrik MR, Feagin TA, Csordas AT, Nakamoto MA, Soh HT (2016) Advancements in aptamer discovery technologies. Account Chem Res 49(9):1903–1910

    Article  CAS  Google Scholar 

  4. Dhiman A, Kalra P, Bansal V, Bruno JG, Sharma TK (2017) Aptamer-based point-of-care diagnostic platforms. Sens Actuators B Chem 246:535–553

    Article  CAS  Google Scholar 

  5. Tang S, Lu W, Gu F, Tong P, Yan Z, Zhang L (2014) A novel electrochemical sensor for lead ion based on cascade DNA and quantum dots amplification. Electrochim Acta 134:1–7

    Article  CAS  Google Scholar 

  6. Cui L, Wu J, Li J, Ju H (2015) Electrochemical sensor for lead cation sensitized with a DNA functionalized Porphyrinic metal–organic framework. Anal Chem 87:10635–10641

    Article  CAS  Google Scholar 

  7. Zhang Y, Su M, Ge L, Ge S, Yu J, Song X (2013) Synthesis and characterization of graphene nanosheets attached to spiky MnO2 nanospheres and its application in ultrasensitive immunoassay. Carbon 2013(57):22–33

    Article  Google Scholar 

  8. Sun J, Tian D, Guo Q, Zhang L, Jiang W, Yang M (2016) A label-free electrochemical immunosensor for the detection of cancer biomarker alpha-fetoprotein (AFP) based on hydroxyapatite induced redox current. Anal Methods 8(40):7319–7323

    Article  CAS  Google Scholar 

  9. Luo J, Rasooly A, Wang L, Zeng K, Shen C, Qian P, Yang M, Qu F (2016) Fluorescent turn-on determination of the activity of peptidases using peptide templated gold nanoclusters. Microchim Acta 183(2):605–610

    Article  CAS  Google Scholar 

  10. Tang T, Ouyang J, Hu L, Guo L, Yang M, Chen X (2016) Synthesis of peptide templated copper nanoclusters for fluorometric determination of Fe(III) in human serum. Microchim Acta 183(10):2831–2836

    Article  CAS  Google Scholar 

  11. Guo L, Tang T, Hu L, Yang M, Chen X (2017) Fluorescence assay of Fe (III) in human serum samples based on pH dependent silver nanoclusters. Sens Actuator B Chem 241:773–778

    Article  CAS  Google Scholar 

  12. Hu L, Hu S, Guo L, Tang T, Yang M (2016) Optical and electrochemical detection of biothiols based on aggregation of silver nanoparticles. Anal Methods 8(24):4903–4907

    Article  CAS  Google Scholar 

  13. Shen C, Zhang K, Gao N, Wei S, Liu G, Chai Y, Yang M (2016) Colorimetric and electrochemical determination of the activity of protein kinase based on retarded particle growth due to binding of phosphorylated peptides to DNA – capped silver nanoclusters. Microchim Acta 183(11):2933–2939

    Article  CAS  Google Scholar 

  14. Shen C, Xia X, Hu S, Yang M, Wang J (2015) Silver nanoclusters-based fluorescence assay of protein kinase activity and inhibition. Anal Chem 87(1):693–698

    Article  CAS  Google Scholar 

  15. Kang W, Ding Y, Zhou H, Liao Q, Yang X, Yang Y, Jiang J, Yang M (2015) Monitoring the activity and inhibition of alkaline phosphatase via quenching and restoration of the fluorescence of carbon dots. Microchim Acta 182(5–6):1161–1167

    Article  CAS  Google Scholar 

  16. Pujari-Palmer S, Chen S, Rubino S, Weng H, Xia W, Engqvist H, Tang L, Ott MK (2016) In vivo and in vitro evaluation of hydroxyapatite nanoparticle morphology on the acute inflammatory response. Biomaterials 90:1–11

    Article  CAS  Google Scholar 

  17. Syamchand SS, Priya S, Sony G (2015) Hydroxyapatite nanocrystals dually doped with fluorescent and paramagnetic labels for bimodal (luminomagnetic) cell imaging. Microchim Acta 182:1213–1221

    Article  CAS  Google Scholar 

  18. Abolghasemi MM, Parastari S, Yousefi V (2016) A nanoporous anodized alumina wire with a nanosized hydroxyapatite coating for headspace solid-phase microextraction of phenol and chlorophenols. Microchim Acta 183:241–247

    Article  CAS  Google Scholar 

  19. Krenkova J, Lacher NA, Svec F (2010) Control of selectivity via Nanochemistry: monolithic capillary column containing hydroxyapatite nanoparticles for separation of proteins and enrichment of Phosphopeptides. Anal Chem 82(19):8335–8341

    Article  CAS  Google Scholar 

  20. Lu HB, Campbell CT, Graham DJ, Ratner BD (2000) Surface characterization of hydroxyapatite and related calcium phosphates by XPS and TOF-SIMS. Anal Chem 72(13):2886–2894

    Article  CAS  Google Scholar 

  21. Wang G, Han R, Feng X, Li Y, Lin J, Luo X (2017) A glassy carbon electrode modified with poly(3,4-ethylenedioxythiophene) doped with nano-sized hydroxyapatite for amperometric determination of nitrite. Microchim Acta 184:1721–1727

    Article  CAS  Google Scholar 

  22. Li J, Kuang d, Feng Y, Zhang F, Liu M (2012) Glucose biosensor based on glucose oxidase immobilized on a nanofilm composed of mesoporous hydroxyapatite, titanium dioxide, and modified with multi-walled carbon nanotubes. Microchim Acta 176:73–80

  23. Syamchand SS, Sony G (2015) Multifunctional hydroxyapatite nanoparticles for drug delivery and multimodal molecular imaging. Microchim Acta 182:1567–1589

    Article  CAS  Google Scholar 

  24. Chang H, Tang L, Wang Y, Jiang j, Li J (2010) Graphene fluorescence resonance energy transfer Aptasensor for the thrombin detection. Anal Chem 82:2341–2346

  25. Wu S, Duan N, Zhao S, Fang C, Wang Z (2014) Simultaneous Aptasensor for multiplex pathogenic bacteria detection based on multicolor Upconversion nanoparticles labels. Anal Chem 86:3100–3107

    Article  CAS  Google Scholar 

  26. Wu Y, Xiao F, Wu Z, Yu R (2017) Novel Aptasensor platform based on Ratiometric surface-enhanced Raman spectroscopy. Anal Chem 89:2852–2858

    Article  CAS  Google Scholar 

  27. Liu J, He D, Liu Q, He X, Wang K, Yang X, Shangguan J, Tang J, Mao Y (2016) Vertically ordered mesoporous silica film-assisted label-free and universal Electrochemiluminescence Aptasensor platform. Anal Chem 88(11707–11713)

  28. Jo H, Gu H, Jeon W, Youn H, Her J, Kim S-K, Lee J, Shin JH, Ban C (2015) Electrochemical Aptasensor of cardiac troponin I for the early diagnosis of acute myocardial infarction. Anal Chem 87:9869–9875

    Article  CAS  Google Scholar 

  29. Zhang X, Xiao K, Cheng L, Chen H, Liu B, Zhang S, Kong J (2014) Visual and highly sensitive detection of cancer cells by a colorimetric Aptasensor based on cell-triggered cyclic enzymatic signal amplification. Anal Chem 86:5567–5572

    Article  CAS  Google Scholar 

  30. Shen C, Li X, Rasooly A, Guo L, Zhang K, Yang M (2016) A single electrochemical biosensor for detecting the activity and inhibition of both protein kinase and alkaline phosphatase based on phosphate ions induced deposition of redox precipitates. Biosens Bioelectron 85:220–225

    Article  CAS  Google Scholar 

  31. Qu F, Yang M, Rasooly A (2016) Dual signal amplification electrochemical biosensor for monitoring the activity and inhibition of the Alzheimer’s related protease β-secretase. Anal Chem 88(21):10559–10565

    Article  CAS  Google Scholar 

  32. Tang L, Liu Y, Ali MM, Kang DK, Zhao W, Li J (2012) Colorimetric and ultrasensitive bioassay based on a dual-amplification system using aptamer and DNAzyme. Anal Chem 84(11):4711–4717

    Article  CAS  Google Scholar 

  33. Guo L, Zhao Q (2016) Determination of the platelet-derived growth factor BB by a competitive thrombin-linked aptamer-based Fluorometric assay. Microchim Acta 183:3229–3235

    Article  CAS  Google Scholar 

  34. Zhang C, Yang J, Quan Z, Yang P, Li C, Hou Z, Lin J (2009) Hydroxyapatite Nano- and Microcrystals with multiform morphologies: controllable synthesis and luminescence properties. Crys Grow Design 9(6):2725–2733

    Article  CAS  Google Scholar 

  35. Xie S, Yuan Y, Chai Y, Yuan R (2015) Tracing phosphate ions generated during loop-mediated isothermal amplification for electrochemical detection of nosema bombycis genomic DNA PTP1. Anal Chem 87(20):10268–10274

    Article  CAS  Google Scholar 

  36. Hu L, Hu S, Guo L, Shen C, Yang M, Rasooly A (2017) DNA generated electric current biosensor. Anal Chem 89(4):2547–2552

    Article  CAS  Google Scholar 

  37. Huang Y, Tang C, Liu J, Cheng J, Si Z, Li T, Yang M (2017) Signal amplification strategy for electrochemical immunosensing based on a molybdophosphate induced enhanced redox current on the surface of hydroxyapatite nanoparticles. Microchim Acta 184(3):855–861

    Article  CAS  Google Scholar 

  38. Si z, Xie B, Chen Z, Tang C, Li T, Yang M (2017) Electrochemical aptasensor for the cancer biomarker CEA based on aptamer induced current due to formation of molybdophosphate. Microchim Acta 184:3215–3221

  39. Li H, Wang M, Wang C, Li W, Qiang W, Xu D (2013) Silver nanoparticle-enhanced fluorescence resonance energy transfer sensor for human platelet-derived growth factor-BB detection. Anal Chem 85(9):4492–4499

    Article  CAS  Google Scholar 

  40. Li H, Zhao Y, Chen Z, Xu D (2017) Silver enhanced ratiometric nanosensor based on two adjustable fluorescence resonance energy transfer modes for quantitative protein sensing. Biosens Bioelectron 87:428–432

    Article  CAS  Google Scholar 

  41. Zhang Z, Guo C, Zhang S, He L, Wang M, Peng D, Tian J, Fang S (2017) Carbon-based nanocomposites with aptamer-templated silver nanoclusters for the highly sensitive and selective detection of platelet-derived growth factor. Biosens Bioelectron 89:735–742

    Article  CAS  Google Scholar 

  42. He L, Zhang S, Ji H, Wang M, Peng D, Yan F, Fang S, Zhang H, Jia C, Zhang Z (2016) Protein-templated cobaltous phosphate nanocomposites for the highly sensitive and selective detection of platelet-derived growth factor-BB. Biosens Bioelectron 79:553–560

    Article  CAS  Google Scholar 

  43. Song W, Li H, Liang H, Qiang W, Xu D (2014) Disposable electrochemical aptasensor array by using in situ DNA hybridization inducing silver nanoparticles aggregate for signal amplification. Anal Chem 86(5):2775–2783

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the support of this work by the National Natural Science Foundation of China (No. 21575165), Tianjin Clinical Research Center for Organ Transplantation Grant (No. 15ZXLCSY00070) and Science and technology fund of Tianjin Municipal Health Bureau (No. 2013 KZ034).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wentao Jiang or Minghui Yang.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, W., Tian, D., Zhang, L. et al. Dual signal amplification strategy for amperometric aptasensing using hydroxyapatite nanoparticles. Application to the sensitive detection of the cancer biomarker platelet-derived growth factor BB. Microchim Acta 184, 4375–4381 (2017). https://doi.org/10.1007/s00604-017-2471-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2471-1

Keywords

Navigation