Skip to main content

Advertisement

Log in

A review on micromixers actuated with magnetic nanomaterials

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The review (with 95 refs.) starts with an introduction that addresses the need for magnetic actuation in microfluidics. A second section describes the equations governing magnetic micromixing, with subsections on magnetic equations, fluid flow equations, and on convection–diffusion equations. The next section specifically covers magnetically actuated micromixers, with subsections on those actuated by external permanent magnets, by electromagnets, by microstirrers, and on micromixers with integrated electrodes. The conclusion summarizes the state of the art and addresses current challenges and trends.

In this review, micromixers are classified into four types according to drive mode including external permanent magnet, electromagnet, microstirrer and the integrated electrode. The basic governing equations and operating rules of magnetic micromixers are given. The review is supposed to provide a helpful reference for those intending to study this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chen X, Liu C, Xu Z (2013) An effective PDMS microfluidic chip for chemiluminescence detection of cobalt (II) in water. Microsyst Technol 19(1):99–103

    Article  Google Scholar 

  2. Barbulovic-Nad I, Lucente M, Sun Y (2006) Bio-microarray fabrication techniques—a review. Crit Rev Biotechnol 26(4):237–259

    Article  CAS  Google Scholar 

  3. Chen X, Li T, Zeng H (2016) Numerical and experimental investigation on micromixers with serpentine microchannels. Int J Heat Mass Transf 98:131–140

    Article  CAS  Google Scholar 

  4. Chen X, Li T (2016) A novel design for passive misscromixers based on topology optimization method. Biomed Microdevices 18(4):1–15

    Article  Google Scholar 

  5. Chen X, Liu C, Xu Z (2012) Macro-micro modeling design in system-level and experiment for a micromixer. Anal Methods 4(8):2334–2340

    Article  CAS  Google Scholar 

  6. Cortelezzi L, Ferrari S, Dubini G (2017) A scalable active micro-mixer for biomedical applications. Microfluid Nanofluid 21(3):31

    Article  Google Scholar 

  7. Chen X, Shen J (2015) Simulation in system-level based on model order reduction for a square-wave micromixer. Int J Nonlinear Sci Numer Simul 16(7–8):307–314

    CAS  Google Scholar 

  8. Chen X, Li T (2017) A novel passive micromixer designed by applying an optimization algorithm to the zigzag microchannel. Chem Eng J 313:1406–1414

    Article  CAS  Google Scholar 

  9. Ma J, Lee S M Y, Yi C (2017) Controllable synthesis of functional nanoparticles by microfluidic platforms for biomedical applications–a review. Lab Chip

    Google Scholar 

  10. Chen X, Li T, Li X (2016) Numerical research on shape optimization of microchannels of passive micromixers. IEEE Sensors J 16(17):6527–6532

    Article  Google Scholar 

  11. Cohen N, Sabhachandani P, Sarkar S (2017) Microsphere based continuous-flow immunoassay in a microfluidic device for determination of clinically relevant insulin levels. Microchim Acta 184(3):835–841

    Article  CAS  Google Scholar 

  12. Baraket A, Lee M, Zine N (2016) A flexible electrochemical micro lab-on-chip: application to the detection of interleukin-10. Microchim Acta 183(7):2155–2162

    Article  CAS  Google Scholar 

  13. Chen X, Zhang Z, Yi D (2015) Numerical studies on different two-dimensional micromixers basing on a fractal-like tree network. Microsyst Technol:1–9

  14. Surdo S, Diaspro A, Duocastella M (2017) Micromixing with spark-generated cavitation bubbles. Microfluid Nanofluid 21(5):82

    Article  Google Scholar 

  15. Chen X, Shen J (2017) Design and simulation of a chaotic micromixer with diamond-like micropillar based on artificial neural network. Int J Chem React Eng 15(2)

  16. Thiele M, Knauer A, Malsch D (2017) Combination of microfluidic high-throughput production and parameter screening for efficient shaping of gold nanocubes using dean-flow mixing. Lab Chip 17(8):1487–1495

    Article  CAS  Google Scholar 

  17. Chen X, Li T, Hu Z (2017) A novel research on serpentine microchannels of passive micromixers. Microsyst Technol:1–8

  18. Chen X, Shen J (2017) Numerical analysis of mixing behaviors of two types of E-shape micromixers. Int J Heat Mass Transf 106:593–600

    Article  CAS  Google Scholar 

  19. Yang F, Kuang C, Zhao W (2017) AC Electrokinetic fast mixing in non-parallel microchannels. Chem Eng Commun 204(2):190–197

    Article  CAS  Google Scholar 

  20. Ang KM, Yeo LY, Hung YM (2016) Amplitude modulation schemes for enhancing acoustically-driven microcentrifugation and micromixing. Biomicrofluidics 10(5):054106

    Article  Google Scholar 

  21. Chang M, Gabayno J L F, Ye R (2016) Mixing efficiency enhancing in micromixer by controlled magnetic stirring of Fe3O4 nanomaterial. Microsyst Technol:1–7

  22. Veldurthi N, Ghoderao P, Sahare S (2016) Magnetically active micromixer assisted synthesis of drug nanocomplexes exhibiting strong bactericidal potential. Mater Sci Eng C 68:455–464

    Article  CAS  Google Scholar 

  23. Li Z, Kim SJ (2017) Gravity-driven pulsatile micromixer without using dynamic off-chip controllers. Micro electro mechanical systems (MEMS), 2017 I.E. 30th international conference on. IEEE, pp 1272–1274

  24. Li J, Chang KW, Wang CH (2016) On-chip, aptamer-based sandwich assay for detection of glycated hemoglobins via magnetic beads. Biosens Bioelectron 79:887–893

    Article  CAS  Google Scholar 

  25. Yap LW, Chen H, Gao Y (2017) Bifunctional Plasmonic-magnetic particles for an enhanced microfluidic SERS immunoassay. Nano 9:7822–7829

    CAS  Google Scholar 

  26. Zhang F, Chen H, Chen B (2016) Alternating current electrothermal micromixer with thin film resistive heaters. Adv Mech Eng 8(5):1–10. https://doi.org/10.1177/1687814016646264

  27. Huang PY, Panigrahi B, Lu CH (2017) An artificial cilia-based micromixer towards the activation of zebrafish sperms. Sensors Actuators B Chem 244:541–548

    Article  CAS  Google Scholar 

  28. Wu CC, Lin HI, Chang KW (2015) Measurement of glycated hemoglobin levels using an integrated microfluidic system. Microfluid Nanofluid 18(4):613–621

    Article  CAS  Google Scholar 

  29. Nguyen NT (2012) Micro-magnetofluidics: interactions between magnetism and fluid flow on the microscale. Microfluid Nanofluid 12(1–4):1–16

    Article  Google Scholar 

  30. Yang RJ, Hou HH, Wang YN (2016) Micro-magnetofluidics in microfluidic systems: a review. Sensors Actuators B Chem 224:1–15

    Article  CAS  Google Scholar 

  31. Pamme N (2006) Magnetism and microfluidics. Lab Chip 6(1):24–38

    Article  CAS  Google Scholar 

  32. Zhang Y, Nguyen NT (2017) Magnetic digital microfluidics–a review. Lab Chip 17(6):994–1008

    Article  CAS  Google Scholar 

  33. Gijs MAM, Lacharme F, Lehmann U (2009) Microfluidic applications of magnetic particles for biological analysis and catalysis. Chem Rev 110(3):1518–1563

    Article  Google Scholar 

  34. Oh DW, Jin JS, Choi JH (2007) A microfluidic chaotic mixer using ferrofluid. J Micromech Microeng 17(10):2077

    Article  Google Scholar 

  35. Cao Q, Han X, Li L (2012) Numerical analysis of magnetic nanoparticle transport in microfluidic systems under the influence of permanent magnets. J Phys D Appl Phys 45(46):465001

    Article  Google Scholar 

  36. Tsai TH, Liou DS, Kuo LS (2009) Rapid mixing between ferro-nanofluid and water in a semi-active Y-type micromixer. Sensors Actuators A Phys 153(2):267–273

    Article  CAS  Google Scholar 

  37. Jung JH, Kim GY, Seo TS (2011) An integrated passive micromixer–magnetic separation–capillary electrophoresis microdevice for rapid and multiplex pathogen detection at the single-cell level. Lab Chip 11(20):3465–3470

    Article  CAS  Google Scholar 

  38. Lin YH, Chen YJ, Lai CS (2013) A negative-pressure-driven microfluidic chip for the rapid detection of a bladder cancer biomarker in urine using bead-based enzyme-linked immunosorbent assay. Biomicrofluidics 7(2):024103

    Article  Google Scholar 

  39. Zhu GP, Nguyen NT (2012) Rapid magnetofluidic mixing in a uniform magnetic field. Lab Chip 12(22):4772–4780

    Article  CAS  Google Scholar 

  40. Zolgharni M, Azimi SM, Bahmanyar MR (2007) A numerical design study of chaotic mixing of magnetic particles in a microfluidic bio-separator. Microfluid Nanofluid 3(6):677–687

    Article  Google Scholar 

  41. Roy T, Sinha A, Chakraborty S (2009) Magnetic microsphere-based mixers for microdroplets. Phys Fluids 21(2):027101

    Article  Google Scholar 

  42. Cerbelli S, Adrover A, Garofalo F (2009) Spectral characterization of mixing properties of annular MHD micromixers. Microfluid Nanofluid 6(6):747–761

    Article  CAS  Google Scholar 

  43. Wei ZH, Lee CP, Lai MF (2010) Magnetic force switches for magnetic fluid micromixing. Jpn J Appl Phys 49(1R):017001

    Article  Google Scholar 

  44. Ganguly R, Hahn T, Hardt S (2010) Magnetophoretic mixing for in situ immunochemical binding on magnetic beads in a microfluidic channel. Microfluid Nanofluid 8(6):739–753

    Article  CAS  Google Scholar 

  45. Himstedt HH, Yang Q, Dasi LP (2011) Magnetically activated micromixers for separation membranes. Langmuir 27(9):5574–5581

    Article  CAS  Google Scholar 

  46. Riahi M, Alizadeh E (2012) Fabrication of a 3D active mixer based on deformable Fe-doped PDMS cones with magnetic actuation. J Micromech Microeng 22(11):115001

    Article  Google Scholar 

  47. Kamali R, Shekoohi SA, Binesh A (2014) Effects of magnetic particles entrance arrangements on mixing efficiency of a magnetic bead micromixer. Nano-Micro Lett 6(1):30–37

    Article  Google Scholar 

  48. Zhou B, Xu W, Syed AA (2015) Design and fabrication of magnetically functionalized flexible micropillar arrays for rapid and controllable microfluidic mixing. Lab Chip 15(9):2125–2132

    Article  CAS  Google Scholar 

  49. Yu H, Nguyen TB, Ng SH (2016) Mixing control by frequency variable magnetic micropillar. RSC Adv 6(14):11822–11828

    Article  CAS  Google Scholar 

  50. Hejazian M, Phan DT, Nguyen NT (2016) Mass transport improvement in microscale using diluted ferrofluid and a non-uniform magnetic field. RSC Adv 6(67):62439–62444

    Article  CAS  Google Scholar 

  51. Ballard M, Owen D, Mills ZG (2016) Orbiting magnetic microbeads enable rapid microfluidic mixing. Microfluid Nanofluid 20(6):1–13

    Article  CAS  Google Scholar 

  52. Lee KY, Park S, Lee YR (2016) Magnetic droplet microfluidic system incorporated with acoustic excitation for mixing enhancement. Sensors Actuators A Phys 243:59–65

    Article  CAS  Google Scholar 

  53. Hejazian M, Nguyen NT (2017) A rapid Magnetofluidic micromixer using diluted Ferrofluid. Micromachines 8(2):37

    Article  Google Scholar 

  54. Petkovic K, Metcalfe G, Chen H (2017) Rapid detection of Hendra virus antibodies: an integrated device with nanoparticle assay and chaotic micromixing. Lab Chip 17(1):169–177

    Article  CAS  Google Scholar 

  55. Nouri D, Hesari AZ, Passandideh-Fard M (2017) Rapid mixing in micromixers using magnetic field. Sensors Actuators A Phys 255:79–86

    Article  CAS  Google Scholar 

  56. Azimi N, Rahimi M, Abdollahi N (2015) Using magnetically excited nanoparticles for liquid–liquid two-phase mass transfer enhancement in a Y-type micromixer. Chem Eng Process Process Intensif 97:12–22

    Article  CAS  Google Scholar 

  57. Rahbar M, Shannon L, Gray BL (2013) Microfluidic active mixers employing ultra-high aspect-ratio rare-earth magnetic nano-composite polymer artificial cilia. J Micromech Microeng 24(2):025003

    Article  Google Scholar 

  58. Cao Q, Han X, Li L (2015) An active microfluidic mixer utilizing a hybrid gradient magnetic field. Int J Appl Electromagn Mech 47(3):583–592

    Google Scholar 

  59. Fu LM, Tsai CH, Leong KP (2010) Rapid micromixer via ferrofluids. Phys Procedia 9:270–273

    Article  CAS  Google Scholar 

  60. Hajiani P, Larachi F (2013) Controlling lateral nanomixing and velocity profile of dilute ferrofluid capillary flows in uniform stationary, oscillating and rotating magnetic fields. Chem Eng J 223:454–466

    Article  CAS  Google Scholar 

  61. Liu F, Zhang J, Alici G (2016) An inverted micro-mixer based on a magnetically-actuated cilium made of Fe doped PDMS. Smart Mater Struct 25(9):095049

    Article  Google Scholar 

  62. Sun H, Nie Z, Fung YS (2010) Determination of free bilirubin and its binding capacity by hsa using a microfluidic chip-capillary electrophoresis device with a multi-segment circular-ferrofluid-driven micromixing injection. Electrophoresis 31(18):3061–3069

    Article  CAS  Google Scholar 

  63. Jackson WC, Tran HD, O’Brien MJ (2001) Rapid prototyping of active microfluidic components based on magnetically modified elastomeric materials. J Vac Sci Technol B: Microelectron Nanometer Struct Process Meas Phenom 19(2):596–599

    Article  CAS  Google Scholar 

  64. Lien KY, Lin JL, Liu CY (2007) Purification and enrichment of virus samples utilizing magnetic beads on a microfluidic system. Lab Chip 7(7):868–875

    Article  CAS  Google Scholar 

  65. Wen CY, Yeh CP, Tsai CH (2009) Rapid magnetic microfluidic mixer utilizing AC electromagnetic field. Electrophoresis 30(24):4179–4186

    Article  CAS  Google Scholar 

  66. Wen CY, Liang KP, Chen H (2011) Numerical analysis of a rapid magnetic microfluidic mixer. Electrophoresis 32(22):3268–3276

    Article  CAS  Google Scholar 

  67. Kitenbergs G, Perzynski R, Cēbers A (2015) Magnetic particle mixing with magnetic micro-convection for microfluidics. J Magn Magn Mater 380:227–230

    Article  CAS  Google Scholar 

  68. Lund-Olesen T, Buus BB, Howalt JG (2008) Magnetic bead micromixer: Influence of magnetic element geometry and field amplitude. J Appl Phys 103(7):07E902

    Article  Google Scholar 

  69. Rida A, Gijs MAM (2004) Manipulation of self-assembled structures of magnetic beads for microfluidic mixing and assaying. Anal Chem 76(21):6239–6246

    Article  CAS  Google Scholar 

  70. Ergin FG, Watz BB, Ērglis K (2015) Time-resolved velocity measurements in a magnetic micromixer. Exp Thermal Fluid Sci 67:6–13

    Article  Google Scholar 

  71. Wang Y, Zhe J, Chung BTF (2008) A rapid magnetic particle driven micromixer. Microfluid Nanofluid 4(5):375–389

    Article  Google Scholar 

  72. Le TN, Suh YK, Kang S (2010) A numerical study on the flow and mixing in a microchannel using magnetic particles. J Mech Sci Technol 24(1):441–450

    Article  Google Scholar 

  73. Saroj SK, Asfer M, Sunderka A (2016) Two-fluid mixing inside a sessile micro droplet using magnetic beads actuation. Sensors Actuators A Phys 244:112–120

    Article  CAS  Google Scholar 

  74. Kefou N, Karvelas E, Karamanos K (2016) Water purification in micromagnetofluidic devices: mixing in MHD micromixers. Procedia Eng 162:593–600

    Article  CAS  Google Scholar 

  75. Boroun S, Larachi F (2017) Enhancing liquid micromixing using low-frequency rotating nanoparticles. AICHE J 63(1):337–346

    Article  CAS  Google Scholar 

  76. Ryu KS, Shaikh K, Goluch E (2004) Micro magnetic stir-bar mixer integrated with parylene microfluidic channels. Lab Chip 4(6):608–613

    Article  CAS  Google Scholar 

  77. Lee SH, van Noort D, Lee JY (2009) Effective mixing in a microfluidic chip using magnetic particles. Lab Chip 9(3):479–482

    Article  CAS  Google Scholar 

  78. Wittbracht F, Weddemann A, Eickenberg B (2012) Enhanced fluid mixing and separation of magnetic bead agglomerates based on dipolar interaction in rotating magnetic fields. Appl Phys Lett 100(12):123507

    Article  Google Scholar 

  79. Lu LH, Ryu KS, Liu C (2002) A magnetic microstirrer and array for microfluidic mixing. J Microelectromech Syst 11(5):462–469

    Article  CAS  Google Scholar 

  80. Biswal SL, Gast AP (2004) Micromixing with linked chains of paramagnetic particles. Anal Chem 76(21):6448–6455

    Article  CAS  Google Scholar 

  81. Li C, Wang Y, Gao Y (2005) Magnetically actuated micromixing on an array-pattern microfluidic chip for immunoassay of human thyrotropin. J Nanosci Nanotechnol 5(8):1297–1300

    Article  CAS  Google Scholar 

  82. Kang TG, Hulsen MA, Anderson PD (2007) Chaotic mixing induced by a magnetic chain in a rotating magnetic field. Phys Rev E 76(6):066303

    Article  Google Scholar 

  83. Tierno P, Johansen TH, Fischer TM (2007) Magnetically driven colloidal microstirrer. J Phys Chem B 111(12):3077–3080

    Article  CAS  Google Scholar 

  84. Mensing GA, Pearce TM, Graham MD (2004) An externally driven magnetic microstirrer. Philos Trans R Soc Lond A Math Phys Eng Sci 362(1818):1059–1068

    Article  Google Scholar 

  85. Chen CY, Lin CY, Hu YT (2014) Inducing 3D vortical flow patterns with 2D asymmetric actuation of artificial cilia for high-performance active micromixing. Exp Fluids 55(7):1765

    Article  Google Scholar 

  86. Veldurthi N, Chandel S, Bhave T (2015) Computational fluid dynamic analysis of poly (dimethyl siloxane) magnetic actuator based micromixer. Sensors Actuators B Chem 212:419–424

    Article  CAS  Google Scholar 

  87. Azimi N, Rahimi M (2017) Magnetic nanoparticles stimulation to enhance liquid-liquid two-phase mass transfer under static and rotating magnetic fields. J Magn Magn Mater 422:188–196

    Article  CAS  Google Scholar 

  88. Mao L, Koser H (2007) Overcoming the diffusion barrier: ultra-fast micro-scale mixing via ferrofluids. Solid-state sensors, actuators and microsystems conference. TRANSDUCERS 2007. International. IEEE pp 1829–1832

  89. Affanni A, Chiorboli G (2010) Development of an enhanced MHD micromixer based on axial flow modulation. Sensors Actuators B Chem 147(2):748–754

    Article  CAS  Google Scholar 

  90. Kang HJ, Choi B (2011) Development of the MHD micropump with mixing function. Sensors Actuators A Phys 165(2):439–445

    Article  CAS  Google Scholar 

  91. Munir A, Wang J, Zhu Z (2011) Mathematical modeling and analysis of a magnetic nanoparticle-enhanced mixing in a microfluidic system using time-dependent magnetic field. IEEE Trans Nanotechnol 10(5):953–961

    Article  Google Scholar 

  92. Qian S, Bau HH (2005) Magneto-hydrodynamic stirrer for stationary and moving fluids. Sensors Actuators B Chem 106(2):859–870

    Article  CAS  Google Scholar 

  93. Suzuki H, Ho CM, Kasagi N (2004) A chaotic mixer for magnetic bead-based micro cell sorter. J Microelectromech Syst 13(5):779–790

    Article  Google Scholar 

  94. Suzuki H, Ho C M (2002) A magnetic force driven chaotic micro-mixer. Micro electro mechanical systems. The fifteenth IEEE international conference on. IEEE, pp 40-43

  95. Jeon H, Massoudi M, Kim J (2017) Magneto-hydrodynamics-driven mixing of a reagent and a phosphate-buffered solution: a computational study. Appl Math Comput 298:261–271

    Google Scholar 

Download references

Acknowledgements

This work was supported by Liaoning Province Doctor Startup Fund (20141131).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueye Chen.

Ethics declarations

The author(s) declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Zhang, L. A review on micromixers actuated with magnetic nanomaterials. Microchim Acta 184, 3639–3649 (2017). https://doi.org/10.1007/s00604-017-2462-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2462-2

Keywords

Navigation