Skip to main content
Log in

Inducing 3D vortical flow patterns with 2D asymmetric actuation of artificial cilia for high-performance active micromixing

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Driven by the advancement of the “lab-chip” concept, a new beating behavior of artificial cilia was identified to meet the demands on rapid and complete fluid mixing in miniaturized devices. This beating behavior is characterized by an in-plane asymmetric motion along a modified figure-of-eight trajectory. A typically symmetric figure-of-eight motion was also tested for comparison. Results showed that with this new beating behavior, the mixing efficiency for complete mixing is 1.34 times faster than that with the typical figure-of-eight motion. More importantly, the required beating area was only approximately two-thirds of that in the typical figure-of-eight motion, which is beneficial for more compact designs of various “lab-chip” applications. The unique planar asymmetric motion of the artificial cilia, which enhanced the magnitudes of the induced three-dimensional (3D) flow, was identified by micro-particle image velocimetry (µPIV) measurement and numerical modeling as a major contributor in enhancing microscale mixing efficiency. Quantitatively, 3D vortical flow structures induced by the artificial cilia were presented to elucidate the underlying interaction between the artificial cilia and the surrounding flow fields. With the presented quantification methods and mixing performance results, a new insight is provided by the hydrodynamic advantage of the presented micromixing concept on efficiently mixing highly viscous flow streams at microscale, to leverage the attributes of artificial cilia in the aspect of microscale flow manipulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Biswal SL, Gast AP (2004) Micromixing with linked chains of paramagnetic particles. Anal Chem 76(21):6448–6455

    Article  Google Scholar 

  • Chen CY, Pekkan K (2013) High-speed three-dimensional characterization of fluid flows induced by micro-objects in deep microchannels. BioChip J 7(2):95–103

    Article  Google Scholar 

  • Chen CY, Chen CY, Lin CY, Hu YT (2013a) Magnetically actuated artificial cilia for optimum mixing performance in microfluidics. Lab Chip 13(14):2834–2839

    Article  Google Scholar 

  • Chen CY, Menon P, Kowalski W, Pekkan K (2013b) Time-resolved OCT-µPIV: a new microscopic PIV technique for noninvasive depth-resolved pulsatile flow profile acquisition. Exp Fluid 54:1426

    Article  Google Scholar 

  • den Toonder J, Onck PR (2013a) Artificial Cilia. Royal Society of Chemistry, UK

  • den Toonder J, Onck PR (2013b) Microfluidic manipulation with artificial/bioinspired cilia. Trends Biotechnol 31:85–91

    Article  Google Scholar 

  • den Toonder J, Bos F, Broer D, Filippini L, Gillies M, de Goede J, Mol T, Reijme M, Talen W, Wilderbeek H, Khatavkar V, Anderson P (2008) Artificial cilia for active micro-fluidic mixing. Lab Chip 8(4):533–541

    Article  Google Scholar 

  • Downton MT, Stark H (2009) Beating kinematics of magnetically actuated cilia. EPL 85(4):44002

    Article  Google Scholar 

  • Evans BA, Shields AR, Carroll RL, Washburn S, Falvo MR, Superfine R (2007) Magnetically actuated nanorod arrays as biomimetic cilia. Nano Lett 7(5):1428–1434

    Article  Google Scholar 

  • Fahrni F, Prins MW, van Ijzendoorn LJ (2009) Micro-fluidic actuation using magnetic artificial cilia. Lab Chip 9(23):3413–3421

    Article  Google Scholar 

  • Fang WF, Yang JT (2009) A novel microreactor with 3D rotating flow to boost fluid reaction and mixing of viscous fluids. Sens Actuat B-Chem 140(2):629–642

    Article  MathSciNet  Google Scholar 

  • Fang YQ, Ye YH, Shen RQ, Zhu P, Guo R, Hu Y, Wu LZ (2012) Mixing enhancement by simple periodic geometric features in microchannels. Chem Eng J 187:306–310

    Article  Google Scholar 

  • Gauger EM, Downton MT, Stark H (2009) Fluid transport at low Reynolds number with magnetically actuated artificial cilia. EPJ E28(2):231–242

    Google Scholar 

  • Hedrick TL (2008) Software techniques for two- and three-dimensional kinematic measurements of biological and biomimetic systems. Bioinspir Biomim 3(3):034001

    Article  Google Scholar 

  • Hussong J, Schorr N, Belardi J, Prucker O, Ruhe J, Westerweel J (2011) Experimental investigation of the flow induced by artificial cilia. Lab Chip 11(12):2017–2022

    Article  Google Scholar 

  • Khaderi S, Hussong J, Westerweel J, den Toonderc J, Onck P (2013) Fluid propulsion using magnetically-actuated artificial cilia—experiments and simulations. RSC Adv 3(31):12735–12742

    Article  Google Scholar 

  • Khatavkar VV, Anderson PD, den Toonder JMJ, Meijer HEH (2007) Active micromixer based on artificial cilia. Phys Fluids 19(8):083605

    Article  Google Scholar 

  • Lambert RA, Rangel RH (2010) The role of elastic flap deformation on fluid mixing in a microchannel. Phys Fluids 22(5):052003

    Article  Google Scholar 

  • Lu LH, Ryu KS, Liu C (2002) A magnetic microstirrer and array for microfluidic mixing. J Microelectromech Sys 11(5):462–469

    Article  Google Scholar 

  • Nguyen NT, Wu ZG (2005) Micromixers—a review. J Micromech Microeng 15(2):R1–R16

    Article  Google Scholar 

  • Patrick MJ, Chen CY, Frakes D, Dur O, Pekkan K (2011) Cellular-level near-wall unsteadiness of high-hematocrit erythrocyte flow using confocal μPIV. Exp Fluids 50:887–904

    Article  Google Scholar 

  • Purcell EM (1977) Life at Low Reynolds-Number. Am J Phys 45(1):3–11

    Article  MathSciNet  Google Scholar 

  • Shields AR, Fiser BL, Evans BA, Falvo MR, Washburn S, Superfine R (2010) Biomimetic cilia arrays generate simultaneous pumping and mixing regimes. Proc Natl Acad Sci USA 107(36):15670–15675

    Article  Google Scholar 

  • Sleigh MA (1974) Cilia and flagella. Elsevier Science and Technology Books

  • Stroock AD, Dertinger SK, Ajdari A, Mezic I, Stone HA, Whitesides GM (2002) Chaotic mixer for microchannels. Science 295(5555):647–651

    Article  Google Scholar 

  • Tang ZL, Hong SB, Djukic D, Modi V, West AC, Yardley J, Osgood RM (2002) Electrokinetic flow control for composition modulation in a microchannel. J Micromech Microeng 12(6):870–877

    Article  Google Scholar 

  • van Oosten CL, Bastiaansen CWM, Broer DJ (2009) Printed artificial cilia from liquid-crystal network actuators modularly driven by light. Nat Mater 8(8):677–682

    Article  Google Scholar 

  • Vilfan M, Potocnik A, Kavcic B, Osterman N, Poberaj I, Vilfan A, Babic D (2010) Self-assembled artificial cilia. Proc Natl Acad Sci USA 107(5):1844–1847

    Article  Google Scholar 

  • Yang JT, Tung KY, Li CC (2009) Mixing and hydrodynamic analysis of a droplet in a planar serpentine micromixer. Microfluid Nanofluid 7(4):545–557

    Article  Google Scholar 

  • Yaralioglu GG, Wygant IO, Marentis TC, Khuri-Yakub BT (2004) Ultrasonic mixing in microfluidic channels using integrated transducers. Anal Chem 76(13):3694–3698

    Article  Google Scholar 

Download references

Acknowledgments

This work would not be possible without the financial support from National Science Council of Taiwan under Contract No. NSC 102-2221-E-006-297-MY3 (to C.-Y. Chen).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chia-Yuan Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1,115 kb)

Supplementary material 2 (WMV 2,977 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, CY., Lin, CY. & Hu, YT. Inducing 3D vortical flow patterns with 2D asymmetric actuation of artificial cilia for high-performance active micromixing. Exp Fluids 55, 1765 (2014). https://doi.org/10.1007/s00348-014-1765-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-014-1765-x

Keywords

Navigation