Skip to main content
Log in

Nanographite-based fluorescent biosensing of Salmonella enteritidis by applying deoxyribonuclease-assisted recycling

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a low-cost and sensitive method for the fluorometric determination of Salmonella enteritidis (S. enteritidis). It is based on the use of nanographite (NG) as a quencher of fluorescence, and on cyclic signal amplification by using deoxyribonuclease I (DNase I). The probe containing a capture probe and two short sequences (probe 1 and probe 2) labeled with carboxyfluorescein (FAM) are used as the signal probe that is adsorbed on the surface of NG via p-stacking interactions. Adsorption results in quenching of the fluorescence of FAM. If S. enteridis is introduced, fluorescence is restored due to the displacement of the probe from the surface of the NG due competitive binding. The signal is considerably amplified by applying DNase I-mediated target recycling. The assay has a linear response that covers the 1 to 50 nM concentration range, with a 0.5 nM lower limit of detection (LOD). A milk sample spiked with S. enteritidis was analyzed and the detection limit is as low as 50 colony-forming units (CFU) per mL. Accordingly, this biosensor is highly sensitive and selective but also cost-effective. Conceivably, the detection scheme may be extended to the detection of other biomolecules.

Schematic of the fluorescent strategy for Salmonella enteritidis assay by using nanographite as a quencher and deoxyribonuclease I-aided signal amplification

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Oliver SP, Jayarao BM, Almeida RA (2005) Foodborne pathogens in milk and the dairy farm environment: food safety and public health implications. Foodborne Pathog Dis 2:115–129

    Article  CAS  Google Scholar 

  2. Nygård K, Jong BD, Guerin PJ, Andersson Y, Olsson A, Giesecke J (2004) Emergence of new Salmonella enteritidis phage types in Europe? Surveillance of infections in returning travelers. BMC Med 2:1–8

    Article  Google Scholar 

  3. Forshell LP , Wierup M (2006) Salmonella contamination: a significant challenge to the global marketing of animal food products. Rev Sci Tech 25:541–554

  4. Pui CF, Wong WC, Chai LC, Tunung R, Jeyaletchumi P, Hidayah MS, Ubong A, Farinazleen MG, Cheah YK, Son R (2011) Salmonella: a foodborne pathogen. Int Food Res J 18:465–473

    Google Scholar 

  5. Gómez-Aldapa CA, Rangel-Vargas E, León HB, Filardo-Kerstupp RS, Gordillo-Martínez AJ, Vázquez-Barrios ME (2013) Presence of diarrheagenic Escherichia coli pathotypes, salmonella and indicator bacteria on fresh-cut jicama [Pachyrhizus erosus (l.) urban] from public markets in mexico. Afr J Microbiol Res 7:4323–4330

    Google Scholar 

  6. Bakthavathsalam P, Rajendran VK, Saran U, Chatterjee S, Ali BM (2013) Immunomagnetic nanoparticle based quantitative PCR for rapid detection of salmonella. Microchim Acta 180:1241–1248

    Article  CAS  Google Scholar 

  7. Lee SH, Jung BY, Rayamahji N, Lee HS, Jeon WJ, Choi KS, Kweon CH, Yoo HS (2009) A multiplex real-time PCR for differential detection and quantification of Salmonella spp., Salmonella enterica serovar Typhimurium and Enteritidis in meats. J Vet Sci 10:43–51

    Article  Google Scholar 

  8. Paião FG, Arisitides LG, Murate LS, Vilasbôas GT, Vilasboas LA, Shimokomaki M (2013) Detection of salmonella spp, salmonella enteritidis and typhimurium in naturally infected broiler chickens by a multiplex PCR-based assay. Braz J Microbiol 44:37–41

    Article  Google Scholar 

  9. Priyanka B, Patil RK, Dwarakanath S (2016) A review on detection methods used for foodborne pathogens. Indian J Med Res 144:327–338

    Article  CAS  Google Scholar 

  10. Vidic J, Manzano M, Chang CM, Jaffrezic-Renault N (2017) Advanced biosensors for detection of pathogens related to livestock and poultry. Vet Res 48:11

    Article  Google Scholar 

  11. Bang J, Shukla S, Kim YH, Kim M (2012) Development of indirect competitive elisa for the detection of salmonella typhimurium. Rom Biotechnol Lett 17:7194–7204

    CAS  Google Scholar 

  12. Chunglok W, Wuragil DK, Oaew S, Somasundrum M, Surareungchai W (2011) Immunoassay based on carbon nanotubes-enhanced elisa for salmonella enterica, serovar typhimurium. Biosens Bioelectron 26:3584–3589

    Article  CAS  Google Scholar 

  13. Fei J, Dou W, Zhao G (2016) Amperometric immunoassay for the detection of salmonella pullorum, using a screen-printed carbon electrode modified with gold nanoparticle-coated reduced graphene oxide and immunomagnetic beads. Microchim Acta 183:1–8

    Article  Google Scholar 

  14. Fei J, Dou W, Zhao G (2015) A sandwich electrochemical immunosensor for salmonella pullorum and salmonella gallinarum based on a screen-printed carbon electrode modified with an ionic liquid and electrodeposited gold nanoparticles. Microchim Acta 182:2267–2275

    Article  CAS  Google Scholar 

  15. Zhang Q, Chen T, Yang S, Wang X, Guo H (2013) Response surface methodology to design a selective enrichment broth for rapid detection of salmonella spp. by sybr green Ι real-time PCR. Appl Microbiol Biotechnol 97:4149–4158

    Article  CAS  Google Scholar 

  16. Liu K, Yan X, Mao B, Wang S, Deng L (2016) Aptamer-based detection of salmonella enteritidis, using double signal amplification by klenow fragment and dual fluorescence. Microchim Acta 183:643–649

    Article  CAS  Google Scholar 

  17. Yang S, Li W, Duan Y, Li Z, Le D (2014) Nicking enzyme-assisted biosensor for salmonella enteritidis detection based on fluorescence resonance energy transfer. Biosens Bioelectron 55:400–404

    Article  Google Scholar 

  18. Ning Y, Li WK, Duan YF, Yang M, Deng L (2014) High specific DNAzyme-aptamer sensor for Salmonella paratyphi A using single-walled nanotubes-based dual fluorescence-spectrophotometric methods. J Biomol Screen 19:1099–1106

    Article  CAS  Google Scholar 

  19. Sasaki H, Kawamoto E, Okiyama E, Ueshiba H, Mikazuki K, Amao H, Sawada T (2006) Molecular typing of pasteurella pneumotropica isolated from rodents by amplified 16S ribosomal DNA restriction analysis and pulsed-field gel electrophoresis. Microbiol Immunol 50:265–272

  20. Mériaux A, Harvey I, Cormier Y, Beaulieu C, Akimov VN, Duchaine C (2001) Random amplified ribosomal DNA restriction analysis for rapid identification of thermophilic actinomycete-like bacteria involved in hypersensitivity pneumonitis. Syst Appl Microbiol 24:277–284

    Article  Google Scholar 

  21. Piao Y, Liu F, Seo TS (2012) A novel molecular beacon bearing a graphite nanoparticle as a nanoquencher for in situ mRNA detection in cancer cells. ACS Appl Mater Interfaces 4:6785–6789

    Article  CAS  Google Scholar 

  22. Wei Y, Li B, Wang X, Duan Y (2014) A nano-graphite-DNA hybrid sensor for magnified fluorescent detection of mercury(ii) ions in aqueous solution. Analyst 139:1618–1621

    Article  CAS  Google Scholar 

  23. Pérez-López B, Merkoçi A (2012) Carbon nanotubes and graphene in analytical sciences. Microchim Acta 179:1–16

    Article  Google Scholar 

  24. Ning Y, Li ZJ, Duan YF, Peng ZH, Deng L (2013) A novel biosensor for detection of salmonella typhimurium carrying SSeC gene based on the secondary quenching effect of carbon nanotubes. J Nanomater Mol Nanotechnol 2:1–5

    Article  Google Scholar 

  25. Duan YF, Ning Y, Song Y, Deng L (2014) Fluorescent aptasensor for the determination of salmonella typhimurium, based on a graphene oxide platform. Microchim Acta 181:647–653

    Article  CAS  Google Scholar 

  26. Lu Z, Chen X, Wang Y, Zheng X, Li CM (2015) Aptamer based fluorescence recovery assay for aflatoxin b1 using a quencher system composed of quantum dots and graphene oxide. Microchim Acta 182:571–578

    Article  CAS  Google Scholar 

  27. Wei Y, Zhang J, Wang X1, Duan Y (2015) Amplified fluorescent aptasensor through catalytic recycling for highly sensitive detection of ochratoxin a. Biosens Bioelectron 65: 16–22

  28. Wei Y, Li B, Wang X, Duan Y (2014) Magnified fluorescence detection of silver(I) ion in aqueous solutions by using nano-graphite-DNA hybrid and DNase I. Biosens Bioelectron 58:276–281

    Article  CAS  Google Scholar 

  29. Huang Y, Chen J, Zhao S, Shi M, Chen ZF, Liang H (2013) Label-free colorimetric aptasensor based on nicking enzyme assisted signal amplification and dnazyme amplification for highly sensitive detection of protein. Anal Chem 85:4423–4430

    Article  CAS  Google Scholar 

  30. Bao T, Shu H, Wei W, Zhang X, Wang S (2014) A sensitive electrochemical aptasensor for atp detection based on exonuclease III-assisted signal amplification strategy. Anal Chim Acta 862:64–69

    Article  Google Scholar 

  31. Xuan F, Luo X, Hsing I (2012) Ultrasensitive solution-phase electrochemical molecular beacon-based DNA detection with signal amplification by exonuclease III-assisted target recycling. Anal Chem 84:5216–5220

    Article  CAS  Google Scholar 

  32. Niazov T, Pavlov V, Xiao Y, Gill R, Willner I (2004) DNAzyme-functionalized AU nanoparticles for the amplified detection of DNA or telomerase activity. Nano Lett 4:1683–1687

    Article  CAS  Google Scholar 

  33. Yi H, Xu W, Yuan Y, Bai L, Wu Y, Chai Y, Yuan R (2014) A pseudo triple-enzyme cascade amplified aptasensor for thrombin detection based on hemin/g-quadruplex as signal label. Biosens Bioelectron 54:415–420

    Article  CAS  Google Scholar 

  34. Xie Y, Lin X, Huang Y, Pan R, Zhu Z, Zhou L, Yang CJ (2015) Highly sensitive and selective detection of miRNA: DNase I-assisted target recycling using DNA probes protected by polydopamine nanospheres. Chem Commun 51:2156–2158

    Article  CAS  Google Scholar 

  35. Lei P, Tang H, Ding S, Ding X, Zhu D, Shen B, Shen B, Cheng Q, Yan Y (2015) Determination of the invA, gene of salmonella, using surface plasmon resonance along with streptavidin aptamer amplification. Microchim Acta 182:289–296

    Article  CAS  Google Scholar 

  36. Luo R, Li Y, Lin X, Dong F, Zhang W, Yan L, Cheng W, Ju H, Ding S (2014) A colorimetric assay method for invA, gene of salmonella, using DNAzyme probe self-assembled gold nanoparticles as single tag. Sensors Actuators B Chem 198:87–93

    Article  CAS  Google Scholar 

  37. Chen YY, Fang YC, Lin SY, Lin YJ, Yen SY, Huang CH, Yang CY, Chau LK, Wang SC (2017) Corona-induced micro-centrifugal flows for concentration of Neisseria and Salmonella bacteria prior to their quantitation using antibody-functionalized SERS-reporter nanobeads. Microchim Acta 184:1021–1028

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank National Natural Science Foundation of Hunan province(2016JJ3098), Outstanding Youth Scientific Research Project Funded by Education department of Hunan Province (15B169), National Natural Science Foundation (81202451), Science and Technology Innovation Team in Colleges and Universities in Hunan Province《Chinese traditional medicine for treatment of infectious diseases》(No: 15, Grxjb-7), Doctor start-up Foundation of Hunan University of Chinese Medicine (9982-1001019), Key Subjects of Hunan University of Chinese Medicine《pathogenic biology》(NO.1) and Project Funded by Hunan Provincial Level Course《Immunology and pathogenic biology》(No. 48) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Ning.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(PDF 258 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Q., Luo, H., Tang, L. et al. Nanographite-based fluorescent biosensing of Salmonella enteritidis by applying deoxyribonuclease-assisted recycling. Microchim Acta 184, 3875–3882 (2017). https://doi.org/10.1007/s00604-017-2363-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2363-4

Keywords

Navigation