Skip to main content
Log in

A caprylate esterase–activated fluorescent probe for sensitive and selective detection of Salmonella enteritidis

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Salmonella enteritidis is one of the most common foodborne pathogens. Many methods have been developed to detect Salmonella, but most of them are expensive, time-consuming, and complex in experimental procedures. Developing a rapid, specific, cost-effective, and sensitive detection method is still demanded. In this work, a practical detection method is presented using salicylaldazine caprylate as the fluorescent probe, which could be hydrolyzed by caprylate esterase liberated from Salmonella lysed by phage, to form strong fluorescent salicylaldazine. The Salmonella could be detected accurately with a low limit of detection of 6 CFU/mL and a broad concentration range of 10–106 CFU/mL. Moreover, this method was successfully used for the rapid detection of Salmonella in milk within 2 h through pre-enrichment by ampicillin-conjugated magnetic beads. The novel combination of fluorescent turn-on probe salicylaldazine caprylate and phage ensures this method has excellent sensitivity and selectivity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang M, Zhang Y, Tian F, Liu X, Du S, Ren G. Overview of rapid detection methods for Salmonella in foods: progress and challenges. Foods. 2021;10(10):2402. https://doi.org/10.3390/foods10102402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Majowicz SE, Musto J, Scallan E, Angulo FJ, Kirk M, O’Brien SJ, Jones TF, Fazil A, Hoekstra RM. The global burden of nontyphoidal Salmonella gastroenteritis. Clin Infect Dis. 2010;50(6):882–9. https://doi.org/10.1086/650733.

    Article  PubMed  Google Scholar 

  3. Man Y, Ban M, Li A, Jin X, Du Y, Pan L. A microfluidic colorimetric biosensor for in-field detection of Salmonella in fresh-cut vegetables using thiolated polystyrene microspheres, hose-based microvalve and smartphone imaging APP. Food Chem. 2021;354:129578. https://doi.org/10.1016/j.foodchem.2021.129578.

    Article  CAS  PubMed  Google Scholar 

  4. Wu S, Hulme JP. Recent advances in the detection of antibiotic and multi-drug resistant Salmonella: an update. Int J Mol Sci. 2021;22(7):3499. https://doi.org/10.3390/ijms22073499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Salam F, Uludag Y, Tothill IE. Real-time and sensitive detection of Salmonella Typhimurium using an automated quartz crystal microbalance (QCM) instrument with nanoparticles amplification. Talanta. 2013;115:761–7. https://doi.org/10.1016/j.talanta.2013.06.034.

    Article  CAS  PubMed  Google Scholar 

  6. Zhuang QQ, He SB, Jiang YC, Huang KY, Xu YY, Peng HP, Deng HH, Chen W. Immunofluorescent-aggregation assay based on anti-Salmonella typhimurium IgG-AuNCs, for rapid detection of Salmonella typhimurium. Microchim Acta. 2022;189(4):160. https://doi.org/10.1007/s00604-022-05263-z.

    Article  CAS  Google Scholar 

  7. Udomkarnjananun S, Kerr SJ, Francke MI, Avihingsanon Y, van Besouw NM, Baan CC, Hesselink DA. A systematic review and meta-analysis of enzyme-linked immunosorbent spot (ELISPOT) assay for BK polyomavirus immune response monitoring after kidney transplantation. J Clin Virol. 2021;140:104848. https://doi.org/10.1016/j.jcv.2021.104848.

    Article  CAS  PubMed  Google Scholar 

  8. Zhao S, Bu T, Yang K, Xu Z, Bai F, He K, Li L, Wang L. Immunochromatographic assay based on polydopamine-decorated iridium oxide nanoparticles for the rapid detection of salbutamol in food samples. ACS Appl Mater Interfaces. 2021;13(24):28899–907. https://doi.org/10.1021/acsami.1c06724.

    Article  CAS  PubMed  Google Scholar 

  9. Dehghani Z, Nguyen T, Golabi M, Hosseini M, Rezayan AH, Mohammadnejad J, Wolff A, Vinayaka AC. Magnetic beads modified with Pt/Pd nanoparticle and aptamer as a catalytic nano-bioprobe in combination with loop mediated isothermal amplification for the on-site detection of Salmonella Typhimurium in food and fecal samples. Food Control. 2021;121:107644. https://doi.org/10.1016/j.foodcont.2020.107664.

    Article  CAS  Google Scholar 

  10. Huang Y, Chen W, Chung J, Yin J, Yoon J. Recent progress in fluorescent probes for bacteria. Chem Soc Rev. 2021;50(13):7725–44. https://doi.org/10.1039/d0cs01340d.

    Article  CAS  PubMed  Google Scholar 

  11. Qi W, Zheng L, Wang S, Huang F, Liu Y, Jiang H, Lin J. A microfluidic biosensor for rapid and automatic detection of Salmonella using metal-organic framework and raspberry Pi. Biosens Bioelectron. 2021;178:113020. https://doi.org/10.1016/j.bios.2021.113020.

    Article  CAS  PubMed  Google Scholar 

  12. Ren Y, Wei J, He Y, Wang Y, Bai M, Zhang C, Luo L, Wang J, Wang Y. Ultrasensitive label-free immunochromatographic strip sensor for Salmonella determination based on salt-induced aggregated gold nanoparticles. Food Chem. 2021;343:128518. https://doi.org/10.1016/j.foodchem.2020.128518.

    Article  CAS  PubMed  Google Scholar 

  13. Kim J-H, Oh S-W. Rapid and sensitive detection of E. coli O157:H7 and S. Typhimurium in iceberg lettuce and cabbage using filtration, DNA concentration, and qPCR without enrichment. Food Chem. 2020;327:127036 https://doi.org/10.1016/j.foodchem.2020.127036.

  14. Du M, Li J, Liu Q, Wang Y, Chen E, Kang F, Tu C. Rapid detection of trace Salmonella in milk using an effective pretreatment combined with droplet digital polymerase chain reaction. Microbiol Res. 2021;251:126838. https://doi.org/10.1016/j.micres.2021.126838.

    Article  CAS  PubMed  Google Scholar 

  15. Lim HJ, Kang ER, Park MY, Kim BK, Kim MJ, Jung S, Roh KH, Sung N, Yang JH, Lee MW, Lee SH, Yang YJ. Development of a multiplex real-time PCR assay for the simultaneous detection of four bacterial pathogens causing pneumonia. PLoS One. 2021;16(6):e0253402. https://doi.org/10.1371/journal.pone.0253402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zheng S, Yang X, Zhang B, Cheng S, Han H, Jin Q, Wang C, Xiao R. Sensitive detection of Escherichia coli O157:H7 and Salmonella typhimurium in food samples using two-channel fluorescence lateral flow assay with liquid Si@quantum dot. Food Chem. 2021;363:130400. https://doi.org/10.1016/j.foodchem.2021.130400.

    Article  CAS  PubMed  Google Scholar 

  17. Huang R, Li M, Lin D, Shao Y, Shang C, Liu Q, Liu G, Li N, Miao R, Peng H, Tang Y, Fang Y. A fluorescent film sensor for high-performance detection of Listeria monocytogenes via vapor sampling. Aggregate. 2022;3:e203. https://doi.org/10.1002/agt2.203.

    Article  CAS  Google Scholar 

  18. Mei J, Leung NL, Kwok RT, Lam JW, Tang BZ. Aggregation-induced emission: together we shine, united we soar! Chem Rev. 2015;115(21):11718–940. https://doi.org/10.1021/acs.chemrev.5b00263.

    Article  CAS  PubMed  Google Scholar 

  19. Kang S, Jung Y, Jung J, Park K-H, Kim D. Bacteria-dye combination screening: diamine-containing BMeS-p-A dye for specific fluorescence imaging of Acinetobacter baumannii. Dyes and Pigments. 2021;185:108939. https://doi.org/10.1016/j.dyepig.2020.108939.

    Article  CAS  Google Scholar 

  20. Qi G, Hu F, Kenry Shi L, Wu M, Liu B. An AIEgen-peptide conjugate as a phototheranostic agent for phagosome-entrapped bacteria. Angew Chem Int Ed. 2019;58(45):16229–35. https://doi.org/10.1002/anie.201906099.

    Article  CAS  Google Scholar 

  21. Xie Y, Li Z. Development of aggregated state chemistry accelerated by aggregation-induced emission. Natl Sci Rev. 2020;8(6):nwaa199. https://doi.org/10.1093/nsr/nwaa199.

  22. Luo J, Xie Z, Lam JW, Cheng L, Chen H, Qiu C, Kwok HS, Zhan X, Liu Y, Zhu D, Tang BZ. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem Commun. 2001;18:1740–1. https://doi.org/10.1039/b105159h.

    Article  Google Scholar 

  23. Mei J, Hong Y, Lam JW, Qin A, Tang Y, Tang BZ. Aggregation-induced emission: the whole is more brilliant than the parts. Adv Mater. 2014;26(31):5429–79. https://doi.org/10.1002/adma.201401356.

    Article  CAS  PubMed  Google Scholar 

  24. Cai X, Liu B. Aggregation-induced emission: recent advances in materials and biomedical applications. Angew Chem Int Ed. 2020;59(25):9868–86. https://doi.org/10.1002/anie.202000845.

    Article  CAS  Google Scholar 

  25. Balachandran YL, Jiang X. Aggregation-induced fluorogens in bio-detection, tumor imaging, and therapy: a review. CCS Chem. 2022;4(2):420–36. https://doi.org/10.31635/ccschem.021.202101307.

    Article  CAS  Google Scholar 

  26. Yoon J. Turning an FDA-approved therapeutic into an AIEgen for imaging live bacteria and for bacterial detection. Aggregate. 2021;2:e47. https://doi.org/10.1002/agt2.47.

  27. Tang W, Xiang Y, Tong A. Salicylaldehyde azines as fluorophores of aggregation-induced emission enhancement characteristics. J Org Chem. 2009;74(5):2163–6. https://doi.org/10.1021/jo802631m.

    Article  CAS  PubMed  Google Scholar 

  28. Wang Z, Zhou F, Wang J, Zhao Z, Qin A, Yu Z, Tang BZ. Electronic effect on the optical properties and sensing ability of AIEgens with ESIPT process based on salicylaldehyde azine. Sci China Chem. 2018;61(1):76–87. https://doi.org/10.1007/s11426-017-9147-0.

    Article  CAS  Google Scholar 

  29. Zhang R, Gao M, Bai S, Liu B. A fluorescent light-up platform with “AIE + ESIPT” characteristics for multi-target detection both in solution and on paper strip. J Mater Chem B. 2015;3:1590–6. https://doi.org/10.1039/C4TB01937G.

    Article  CAS  PubMed  Google Scholar 

  30. Cui L, Baek Y, Lee S, Kwona N, Yoon J. An AIE and ESIPT based kinetically resolved fluorescent probe for biothiols. J Mater Chem C. 2016;4:2909–14. https://doi.org/10.1039/C5TC03272E.

    Article  CAS  Google Scholar 

  31. Pulkkinen EM, Hinkley TC, Nugen SR. Utilizing in vitro DNA assembly to engineer a synthetic T7 Nanoluc reporter phage for Escherichia coli detection. Integr Biol. 2019;11(3):63–8. https://doi.org/10.1093/intbio/zyz005.

    Article  Google Scholar 

  32. Niyomdecha S, Limbut W, Numnuam A, Kanatharana P, Charlermroj R, Karoonuthaisiri N, Thavarungkul P. Phage-based capacitive biosensor for Salmonella detection. Talanta. 2018;188:658–64. https://doi.org/10.1016/j.talanta.2018.06.033.

    Article  CAS  PubMed  Google Scholar 

  33. Paczesny J, Richter L, Holyst R. Recent progress in the detection of bacteria using bacteriophages: a review. Viruses. 2020;12(8):845. https://doi.org/10.3390/v12080845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Meile S, Kilcher S, Loessner MJ, Dunne M. Reporter phage-based detection of bacterial pathogens: design guidelines and recent developments. Viruses. 2020;12(9):944. https://doi.org/10.3390/v12090944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bu T, Yao X, Huang L, Dou L, Zhao B, Yang B, Li T, Wang J, Zhang D. Dual recognition strategy and magnetic enrichment based lateral flow assay toward Salmonella enteritidis detection. Talanta. 2020;206:120204. https://doi.org/10.1016/j.talanta.2019.120204.

    Article  CAS  PubMed  Google Scholar 

  36. Huang C, Mahboubat BY, Ding Y, Yang Q, Wang J, Zhou M, Wang X. Development of a rapid Salmonella detection method via phage-conjugated magnetic bead separation coupled with real-time PCR quantification. Lwt. 2021;142:111075. https://doi.org/10.1016/j.lwt.2021.111075.

    Article  CAS  Google Scholar 

  37. Ding Y, Zhang Y, Huang C, Wang J, Wang X. An endolysin LysSE24 by bacteriophage LPSE1 confers specific bactericidal activity against multidrug-resistant Salmonella strains. Microorganisms. 2020;8(5):737. https://doi.org/10.3390/microorganisms8050737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kunushpayeva Z, Rapikov A, Akhmetova A, Sultangaziyev A, Dossym D, Bukasov R. Sandwich SERS immunoassay of human immunoglobulin on silicon wafer compared to traditional SERS substrate, gold film. Sens Biosensing Res. 2020;29:100355. https://doi.org/10.1016/j.sbsr.2020.100355.

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the Fundamental Research Funds for the Central Universities (No. 2662019QD032) and the National Key Research and Development Program of China (2017YFE0113900).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wan-Min Cheng or Hong Jiang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6818 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Wang, X., Xu, Z. et al. A caprylate esterase–activated fluorescent probe for sensitive and selective detection of Salmonella enteritidis. Anal Bioanal Chem 415, 2163–2172 (2023). https://doi.org/10.1007/s00216-023-04623-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04623-9

Keywords

Navigation