Skip to main content
Log in

Carbon fibers coated with urchin-like copper sulfide for nonenzymatic voltammetric sensing of glucose

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Urchin-like CuS was grown on xanthan gum-derived carbon nanofibers to obtain a sensor for enzyme-free electrochemical sensing of glucose. The unique nanostructure of the sensor provides a large specific surface, more electrocatalytically active sites, and high electrical conductivity. The voltammetric response to glucose, best measured at around 57 mV (vs. Ag/AgCl (E/V)) in 0.1 M NaOH solution, covers two linear ranges, one from 0.1–125 μM, another from 0.16 to 1.2 mM. The sensitivity is quite high (23.7 μA mM−1 cm−2), and the detection limit is low (19 nM at S/N = 3). The sensor has high selectivity against potentially interfering molecules such as fructose, appreciable operational stability, excellent durability, and good repeatability (with relative standard deviations of 2.3%). It was successfully applied to the determination of glucose in diluted serum samples.

Schematic representation of electrochemical detection of glucose based on the use of a screen printed carbon electrode (SPCE) modified with CuS and xanthan gum-derived carbon nanofibers (XGCNFs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bae CW, Toi PT, Kim BY, Lee WI, Lee HB, Hanif A, Lee E.H, Lee NE (2019) Fully stretchable capillary microfluidics-integrated Nanoporous gold electrochemical sensor for wearable continuous glucose monitoring. ACS Appl Mater Interfaces 11(16): 14567–14575

    Article  CAS  Google Scholar 

  2. Hu C, Yang DP, Zhu F, Jiang F, Shen S, Zhang J (2014) Enzyme-labeled Pt@ BSA nanocomposite as a facile electrochemical biosensing interface for sensitive glucose determination. ACS Appl Mater Interfaces 6:4170–4178

    Article  CAS  Google Scholar 

  3. Gao H, Xiao F, Ching CB, Duan H (2011) One-step electrochemical synthesis of PtNi nanoparticle-graphene nanocomposites for nonenzymatic amperometric glucose detection. ACS Appl Mater Interfaces 3:3049–3057

    Article  CAS  Google Scholar 

  4. Tomanin PP, Cherepanov PV, Besford QA, Christofferson AJ, Amodio A, McConville CF, Yarovsky I, Caruso F, Cavalieri F (2018) Cobalt phosphate nanostructures for non-enzymatic glucose sensing at physiological pH. ACS Appl Mater Interfaces 10:42786–42795

    Article  CAS  Google Scholar 

  5. Dhara K, Mahapatra DR (2018) Electrochemical nonenzymatic sensing of glucose using advanced nanomaterials. Microchim Acta 185:49

    Article  Google Scholar 

  6. Deepalakshmi T, Tran DT, Kim NH, Chong KT, Lee JH (2018) Nitrogen-doped Graphene-encapsulated nickel cobalt nitride as a highly sensitive and selective electrode for glucose and hydrogen peroxide sensing applications. ACS Appl Mater Interfaces 10:35847–35858

    Article  CAS  Google Scholar 

  7. Chen X, Liu D, Cao G, Tang Y, Wu C (2019) In situ synthesis of Sandwich-like Graphene@ ZIF-67 Heterostructure for highly sensitive nonenzymatic glucose sensing in human serums. ACS Appl Mater Interfaces 11(9):9374–9384

    Article  CAS  Google Scholar 

  8. Lin LY, Karakocak BB, Kavadiya S, Soundappan T, Biswas P (2018) A highly sensitive non-enzymatic glucose sensor based on cu/Cu2O/CuO ternary composite hollow spheres prepared in a furnace aerosol reactor. Sensors Actuators B Chem 259:745–752

    Article  CAS  Google Scholar 

  9. Qian L, Mao J, Tian X, Yuan H, Xiao D (2013) In situ synthesis of CuS nanotubes on cu electrode for sensitive nonenzymatic glucose sensor. Sensors Actuators B Chem 176:952–959

    Article  CAS  Google Scholar 

  10. Wang S, Han Z, Li Y, Peng R, Feng B (2015) An electrochemical sensor based on reduced graphene oxide and copper sulfide hollow nanospheres. RSC Adv 5:107318–107325

    Article  CAS  Google Scholar 

  11. Siahrostami S (2018) Designing carbon-based materials for efficient electrochemical reduction of CO2. Ind Eng Chem Res 58:879–885

    Article  Google Scholar 

  12. De B, Balamurugan J, Kim NH, Lee JH (2017) Enhanced electrochemical and Photocatalytic performance of Core–Shell CuS@carbon quantum dots@carbon hollow Nanospheres. ACS Appl Mater Interfaces 9:2459–2246

    Article  CAS  Google Scholar 

  13. Elschner T, Heinze T (2015) Cellulose carbonates: a platform for promising biopolymer derivatives with multifunctional capabilities. Macromol Biosci 15:735–746

    Article  CAS  Google Scholar 

  14. Cheng Y, Pang K, Wu X, Zhang Z, Xu X, Ren J, Huang W, Song R (2018) In situ hydrothermal synthesis MoS2/guar gum carbon Nanoflowers as advanced Electrocatalysts for Electrocatalytic hydrogen evolution. ACS Sustain Chem Eng 6:8688–8696

    Article  CAS  Google Scholar 

  15. Lin Y, Chen Z, Yu C, Zhong W (2019) Heteroatom-doped Sheet-like and hierarchical porous carbon based on natural biomass small molecule peach gum for high-performance Supercapacitors. ACS Sustain Chem Eng 7:3389–3403

    Article  CAS  Google Scholar 

  16. Jiang L, Sheng L, Fan Z (2018) Biomass-derived carbon materials with structural diversities and their applications in energy storage. Sci Chin Mater 61:133–158

    Article  CAS  Google Scholar 

  17. Palaniraj A, Jayaraman V (2011) Production, recovery and applications of xanthan gum by Xanthomonas campestris. J Food Eng 106:1–12

    Article  CAS  Google Scholar 

  18. Wang L, Schiraldi DA, Sánchez-Soto M (2014) Foamlike xanthan gum/clay aerogel composites and tailoring properties by blending with agar. Ind Eng Chem Res 53:7680–7687

    Article  CAS  Google Scholar 

  19. Hamcerencu M, Desbrieres J, Popa M, Riess G (2009) Stimuli-sensitive xanthan derivatives/N-isopropylacrylamide hydrogels: influence of cross-linking agent on interpenetrating polymer network properties. Biomacromolecules 10:1911–1922

    Article  CAS  Google Scholar 

  20. Ghorai S, Sarkar A, Raoufi M, Panda AB, Schönherr H, Pal S (2014) Enhanced removal of methylene blue and methyl violet dyes from aqueous solution using a nanocomposite of hydrolyzed polyacrylamide grafted xanthan gum and incorporated nanosilica. ACS Appl Mater Interfaces 6:4766–4777

    Article  CAS  Google Scholar 

  21. Del Agua I, Marina S, Pitsalidis C, Mantione D, Ferro M, Iandolo D, Sanchez-Sanchez A, Malliaras GG, Owens RIM, Mecerreyes D (2018) Conducting polymer scaffolds based on poly (3, 4-ethylenedioxythiophene) and xanthan gum for live-cell monitoring. ACS Omega 3:7424–7431

    Article  Google Scholar 

  22. Silva-Medeiros FV, Vernasqui LG, Valderrama P (2016) Xanthan gum as a novel flocculant aid employed in drinking water treatment. Braz J Food Res 7:52–65

    Article  Google Scholar 

  23. Andrew T (1979) Application of xanthan gum in food and related products. Extracell Microb Polysaccharide 18:231–241

    Google Scholar 

  24. Zhang Y, Tian J, Li H, Wang L, Qin X, Asiri AM, Al-Youbi AO, Sun X (2012) Biomolecule-assisted, environmentally friendly, one-pot synthesis of CuS/reduced graphene oxide nanocomposites with enhanced photocatalytic performance. Langmuir 28:12893–12900

    Article  CAS  Google Scholar 

  25. Dutta S, Chatterjee S, Mukherjee I, Saha R, Singh BP (2017) Fabrication of ZnS hollow spheres and RGO-ZnS nanocomposite using cysteamine as novel sulfur source: photocatalytic performance on industrial dyes and effluent. Ind Eng Chem Res 56:4768–4778

    Article  CAS  Google Scholar 

  26. Zhang J, Feng H, Yang J, Qin Q, Fan H, Wei C, Zheng W (2015) Solvothermal synthesis of three-dimensional hierarchical CuS microspheres from a cu-based ionic liquid precursor for high-performance asymmetric supercapacitors. ACS Appl Mater Interfaces 7:21735–21744

    Article  CAS  Google Scholar 

  27. Wang P, Gao Y, Li P, Zhang X, Niu H, Zheng Z (2016) Doping Zn2+ in CuS Nanoflowers into chemically homogeneous Zn0. 49Cu0. 50S1. 01 Superlattice crystal structure as high-efficiency n-type photoelectric semiconductors. ACS Appl Mater Interfaces 8:15820–15827

    Article  CAS  Google Scholar 

  28. Li J, Yan D, Lu T, Qin W, Yao Y, Pan L (2017) Significantly improved sodium-ion storage performance of CuS nanosheets anchored into reduced graphene oxide with ether-based electrolyte. ACS Appl Mater Interfaces 9:2309–2316

    Article  CAS  Google Scholar 

  29. Kim WB, Lee SH, Cho M, Lee Y (2017) Facile and cost-effective CuS dendrite electrode for non-enzymatic glucose sensor. Sensors Actuators B Chem 249:161–167

    Article  CAS  Google Scholar 

  30. Zhao Y, Fan L, Zhang Y, Zhao H, Li X, Li Y, Wen L, Yan Z, Huo Z (2015) Hyper-branched cu@Cu2O coaxial nanowires mesh electrode for ultra-sensitive glucose detection. ACS Appl Mater Interfaces 7:16802–16812

    Article  CAS  Google Scholar 

  31. Fang B, Gu A, Wang G, Wang W, Feng Y, Zhang C, Zhang X (2009) Silver oxide nanowalls grown on cu substrate as an enzymeless glucose sensor. ACS Appl Mater Interfaces 1:2829–2834

    Article  CAS  Google Scholar 

  32. Yan X, Gu Y, Li C, Zheng B, Li Y, Zhang T, Zhang Z, Yang M (2018) A non-enzymatic glucose sensor based on the CuS nanoflakes–reduced graphene oxide nanocomposite. Anal Methods 10:381–388

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by the Ministry of Science and Technology (MOST 106-2113-M-027-003), Taiwan, ROC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shen-Ming Chen.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 358 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keerthi, M., Mutharani, B., Chen, SM. et al. Carbon fibers coated with urchin-like copper sulfide for nonenzymatic voltammetric sensing of glucose. Microchim Acta 186, 807 (2019). https://doi.org/10.1007/s00604-019-3915-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3915-6

Keywords

Navigation