Skip to main content

Advertisement

Log in

Paper-based device with on-chip reagent storage for rapid extraction of DNA from biological samples

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Conventional methods for extraction of DNA are expensive, time-consuming and tedious. To overcome these limitations, a paper-based DNA extraction device was developed that incorporates sponge-based buffer storage, a paper-based valve and channels of different length to autonomously direct the reagent and sample to the Fusion 5 disk for DNA capturing. With this device, DNA can be extracted within 2 min from only 30 μL samples of whole blood, serum, breast cancer cell, saliva, sputum and bacterial suspension. The device can also extract Hepatitis B Virus DNA from clinical blood samples and after quantification shows a detection limit as low as 104 copies⋅mL−1. This highlights its potential use in future diagnostics. The performance of the device was similar to that of the commercial QIAamp DNA micro kits and the FTA card. In our perception, this simple, inexpensive, portable and disposable device holds great promise in terms of POC testing in resource-poor settings.

Schematic of a paper-based DNA extraction device that incorporates sponge-based on-chip reagent storage, a paper-based valve and channels of different length to autonomously direct the reagent and sample to the Fusion 5 disk for DNA capturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Roewer L (2013) DNA fingerprinting in forensics_ past, present, future. Investig Genet 4:22–32. doi:10.1186/2041-2223-4-22

    Article  Google Scholar 

  2. Petras ML, Lefferts JAWB, Suriawinata AA, Tsongalis GJ (2011) KRAS detection in colonic tumors by DNA extraction from FTA paper: the molecular touch-prep. Diagnostic Molecular Pathology: The American Journal of Surgical Pathology, Part B 20(4):189–193. doi:10.1097/PDM.0b013e318211d554

    Article  CAS  Google Scholar 

  3. Thomsen PFKJ, Iversen LL, Wiuf C, Rasmussen M, Gilbert MT, Orlando L, Willerslev E (2012) Monitoring endangered freshwater biodiversity using environmental DNA. Mol Ecol 21(11):2565–2573. doi:10.1111/j.1365-294X.2011.05418.x

    Article  CAS  Google Scholar 

  4. Gruentzig AWKC, Sharon A, Jeff B, Chatterjee A, Sauer-Budge AF (2011) A new DNA extraction method for automated food analysis. Anal Methods 3(7):1507. doi:10.1039/c0ay00701c

    Article  CAS  Google Scholar 

  5. Tang R, Yang H, Choi JR, Gong Y, Hu J, Feng S, Pingguan-Murphy B, Mei Q, Xu F (2016) Improved sensitivity of lateral flow assay using paper-based sample concentration technique. Talanta 152:269–276. doi:10.1016/j.talanta.2016.02.017

    Article  CAS  Google Scholar 

  6. Choi JR, Hu J, Tang R, Gong Y, Feng S, Ren H, Wen T, Li X, Wan Abas WA, Pingguan-Murphy B, Xu F (2016) An integrated paper-based sample-to-answer biosensor for nucleic acid testing at the point of care. Lab Chip 16(3):611–621. doi:10.1039/c5lc01388g

    Article  CAS  Google Scholar 

  7. Choi JR, Hu J, Feng S, Wan Abas WA, Pingguan-Murphy B, Xu F (2016) Sensitive biomolecule detection in lateral flow assay with a portable temperature-humidity control device. Biosens Bioelectron 79:98–107. doi:10.1016/j.bios.2015.12.005

    Article  CAS  Google Scholar 

  8. Tang RH, Yang H, Choi JR, Gong Y, Feng SS, Pingguan-Murphy B, Huang QS, Shi JL, Mei QB, Xu F (2016) Advances in paper-based sample pretreatment for point-of-care testing. Crit Rev Biotechnol 1–18. doi:10.3109/07388551.2016.1164664

  9. Alireza Javadi MS, Leila, Mohammadi Ziazi MP, Atosa Dorudinia SM, Seyedmehdi SK (2014) Qualification study of two genomic DNA extraction methods in different clinical samples. Tanaffos 13(4):41–47

    Google Scholar 

  10. Poh JJ, Gan SK (2014) Comparison of customized spin-column and salt-precipitation finger-prick blood DNA extraction. Biosci Rep 34(5):629–634. doi:10.1042/BSR20140105

    Article  Google Scholar 

  11. Sirdah MM (2014) Superparamagnetic-bead based method: an effective DNA extraction from dried blood spots (DBS) for diagnostic PCR. J Clin Diagn Res: JCDR 8(4):FC01–FC04. doi:10.7860/JCDR/2014/8171.4226

    CAS  Google Scholar 

  12. Choi JRTR, Wang SQ, Wan Abas WA, Pingguan-Murphy B, Xu F (2015) Paper-based sample-to-answer molecular diagnostic platform for point-of-care diagnostics. Biosens Bioelectron 74:427–439. doi:10.1016/j.bios.2015.06.065

    Article  CAS  Google Scholar 

  13. Hu J, Wang S, Wang L, Li F, Pingguan-Murphy B, Lu TJ, Xu F (2014) Advances in paper-based point-of-care diagnostics. Biosens Bioelectron 54:585–597. doi:10.1016/j.bios.2013.10.075

    Article  CAS  Google Scholar 

  14. Xu Y, Liu M, Kong N, Liu J (2016) Lab-on-paper micro- and nano-analytical devices: fabrication, modification, detection and emerging applications. Microchim Acta 183(5):1521–1542. doi:10.1007/s00604-016-1841-4

    Article  CAS  Google Scholar 

  15. Wolfgramm Ede V, de Carvalho FM, Aguiar VR, Sartori MP, Hirschfeld-Campolongo GC, Tsutsumida WM, Louro ID (2009) Simplified buccal DNA extraction with FTA elute cards. Forensic Sci Int Genet 3(2):125–127. doi:10.1016/j.fsigen.2008.11.008

    Article  Google Scholar 

  16. McFall SM, Wagner RL, Jangam SR, Yamada DH, Hardie D, Kelso DM (2015) A simple and rapid DNA extraction method from whole blood for highly sensitive detection and quantitation of HIV-1 proviral DNA by real-time PCR. J Virol Methods 214:37–42. doi:10.1016/j.jviromet.2015.01.005

    Article  CAS  Google Scholar 

  17. Wupeng Gan BZ, Zhang P, Han J, Lid C-X, Liu P (2014) A filter paper-based microdevice for low-cost rapid, and automated DNA extraction and amplification from diverse sample types. Lab Chip 14:3719–3728. doi:10.1039/C4LC00686K

    Article  Google Scholar 

  18. Govindarajan AVRS, Vigil GD, Yager P, Bohringer KF (2012) A low cost point-of-care viscous sample preparation device for molecular diagnosis in the developing world; an example of microfluidic origami. Lab Chip 12(1):174–181. doi:10.1039/c1lc20622b

    Article  CAS  Google Scholar 

  19. Alidjinou EK, Ebatetou-Ataboho E, Sané F, Moukassa D, Dewilde A, Hober D (2013) Cervical samples dried on filter paper and dried vaginal tampons can be useful to investigate the circulation of high-risk HPV in Congo. J Clin Virol 57(2):161–164. doi:10.1016/j.jcv.2013.02.010

    Article  CAS  Google Scholar 

  20. Hyeran Noh STP (2010) Fluidic timers for time-dependent, point-of-care assays on paper. Anal Chem 82:8071–8078. doi:10.1021/ac1005537

    Article  Google Scholar 

  21. Jangam SR, Yamada DH, McFall SM, DM K (2009) Rapid, point-of-care extraction of human immunodeficiency virus type 1 proviral DNA from whole blood for detection by real-time PCR. J Clin Microbiol 47(8):2363–2368. doi:10.1128/JCM.r00092-09

    Article  CAS  Google Scholar 

  22. Rui Gong SL (2014) Extraction of human genomic DNA from whole blood using a magnetic microsphere method. Int J Nanomedicine 9:3781–3789. doi:10.2147/IJN.S59545

    Article  Google Scholar 

  23. de Man RA, Pas SD, Fries E, HGM N, Osterhaus ADME (2000) Development of a quantitative real-time detection assay for hepatitis B virus DNA and Comparison with two commercial assays. J Clin Microbiol 38:2897–2901

    Google Scholar 

  24. Esser K-H, Marx WH, Lisowsky T (2006) maxXbond: first regeneration system for DNA binding silica matrices. Nat methods 3(1). doi:10.1038/nmeth845

  25. Zhanguo Xin JPV, Oliver MJ, Burke JJ (2003) High-throughput DNA extraction method suitable for PCR. BioTechniques 34:820–826

    Google Scholar 

  26. Al-Soud WA, Radstrom P (2001) Purification and characterization of PCR-inhibitory components in blood cells. J Clin Microbiol 39(2):485–493. doi:10.1128/JCM.39.2.485-493.2001

    Article  CAS  Google Scholar 

  27. Queipo-Ortuno MI, Tena F, Colmenero JD, Morata P (2008) Comparison of seven commercial DNA extraction kits for the recovery of Brucella DNA from spiked human serum samples using real-time PCR. European Journal of Clinical Microbiology & Infectious Diseases: Official Publication of the European Society of Clinical Microbiology 27(2):109–114. doi:10.1007/s10096-007-0409-y

    Article  CAS  Google Scholar 

  28. Yeung SW, Hsing IM (2006) Manipulation and extraction of genomic DNA from cell lysate by functionalized magnetic particles for lab on a chip applications. Biosens Bioelectron 21(7):989–997. doi:10.1016/j.bios.2005.03.008

    Article  CAS  Google Scholar 

  29. Wang C-H, Lien K-Y, Wu J-J, Lee G-B (2011) A magnetic bead-based assay for the rapid detection of methicillin-resistant Staphylococcus aureus by using a microfluidic system with integrated loop-mediated isothermal amplification. Lab Chip 11(8):1521. doi:10.1039/c0lc00430h

    Article  CAS  Google Scholar 

  30. Lee J-G, Cheong KH, Huh N, Kim S, Choi J-W, Ko C (2006) Microchip-based one step DNA extraction and real-time PCR in one chamber for rapid pathogen identification. Lab Chip 6(7):886. doi:10.1039/b515876a

    Article  CAS  Google Scholar 

  31. Becker H, Maleki T, Gray BL, Fricke T, Quesenberry JT, Todd P, Leary JF (2012) Point-of-care, portable microfluidic blood analyzer system. Proc SPIE 8251:82510C–882511. doi:10.1117/12.909051

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (11472224, 11672246).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Yang or Feng Xu.

Ethics declarations

The author(s) declare that they have no competing of interests.

Electronic supplementary material

ESM 1

(DOCX 1.91 mb)

ESM 2

(WMV 7337 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, R., Yang, H., Choi, J.R. et al. Paper-based device with on-chip reagent storage for rapid extraction of DNA from biological samples. Microchim Acta 184, 2141–2150 (2017). https://doi.org/10.1007/s00604-017-2225-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2225-0

Keywords

Navigation