Skip to main content
Log in

Shaping up field-deployable nucleic acid testing using microfluidic paper-based analytical devices

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Rapid, low-cost, and sensitive nucleic acid detection and quantification assays enabled by microfluidic paper-based analytical devices (μPADs) hold great promise for point-of-care disease diagnostics and field-based molecular tests. Through the capillary action in μPAD, flexible manipulation of nucleic acid samples can be achieved without the need for external pumps or power supplies, making it possible to fabricate highly integrated sample-to-answer devices that streamline the nucleic acid extraction, separation, concentration, amplification, and detection. To detect minute amounts of genetic materials from clinical and biological samples, it is also critical to develop sensitive signal readouts that generate physically detectable signals for in-device nucleic acid detection and/or quantification. In this review, we will focus on μPAD approaches for the facile manipulation of nucleic acids and emerging signal transduction strategies allowing sensitive and specific nucleic acid detection in μPAD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yager P, Domingo GJ, Gerdes J. Point-of-care diagnostics for global health. Annu Rev Biomed Eng. 2008;10:107–44.

    Article  CAS  PubMed  Google Scholar 

  2. Martinez AW, Phillips ST, Butte MJ, Whitesides GM. Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem Int Ed. 2007;119:1340–2.

    Article  Google Scholar 

  3. Cate DM, Adkins JA, Mettakoonpitak J, Henry CS. Recent developments in paper-based microfluidic devices. Anal Chem. 2015;87:19–41.

    Article  CAS  PubMed  Google Scholar 

  4. Gong MM, Sinton D. Turning the page: advancing paper-based microfluidics for broad diagnostic application. Chem Rev. 2017;117:8447–80.

    Article  CAS  PubMed  Google Scholar 

  5. Magro L, Escadafal C, Garneret P, Jacquelin B, Kwasiborski A, Manuguerra J-C, et al. Paper microfluidics for nucleic acid amplification testing (NAAT) of infectious diseases. Lab Chip. 2017;17:2347–71.

    Article  CAS  PubMed  Google Scholar 

  6. Fronczek CF, Park TS, Harshman DK, Nicolini AM, Yoon J-Y. Paper microfluidic extraction and direct smartphone-based identification of pathogenic nucleic acids from field and clinical samples. RSC Adv. 2014;4:11103.

    Article  CAS  Google Scholar 

  7. Govindarajan AV, Ramachandran S, Vigil GD, Yager P, Böhringer KF. A low cost point-of-care viscous sample preparation device for molecular diagnosis in the developing world; an example of microfluidic origami. Lab Chip. 2012;12:174–81.

    Article  CAS  PubMed  Google Scholar 

  8. Li X, Luo L, Crooks RM. Low-voltage paper isotachophoresis device for DNA focusing. Lab Chip. 2015;15:4090–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gong MM, Nosrati R, Gabriel MCS, Zini A, Sinton D. Direct DNA analysis with paper-based ion concentration polarization. J Am Chem Soc. 2015;137:13913–9.

    Article  CAS  PubMed  Google Scholar 

  10. Rohrman BA, Richards-Kortum RR. A paper and plastic device for performing recombinase polymerase amplification of HIV DNA. Lab Chip. 2012;12:3082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Connelly JT, Rolland JP, Whitesides GM. “Paper Machine” for molecular diagnostics. Anal Chem. 2015;87:7595–601.

    Article  CAS  PubMed  Google Scholar 

  12. Xu G, Nolder D, Reboud J, Oguike MC, Van Schalkwyk DA, Sutherland CJ, et al. Paper-origami-based multiplexed malaria diagnostics from whole blood. Angew Chem Int Ed. 2016;55:15250–3.

    Article  CAS  Google Scholar 

  13. Rosenfeld T, Bercovici M. Amplification-free detection of DNA in a paper-based microfluidic device using electroosmotically balanced isotachophoresis. Lab Chip. 2018;18:861–8.

    Article  CAS  PubMed  Google Scholar 

  14. Liu M, Hui CY, Zhang Q, Gu J, Kannan B, Jahanshahi-Anbuhi S, et al. Target-induced and equipment-free DNA amplification with a simple paper device. Angew Chem Int Ed. 2016;55:2709–13.

    Article  CAS  Google Scholar 

  15. Seok Y, Joung H-A, Byun J-Y, Jeon H-S, Shin SJ, Kim S, et al. A paper-based device for performing loop-mediated isothermal amplification with real-time simultaneous detection of multiple DNA targets. Theranostics. 2017;7:2220–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yang Z, Xu G, Reboud J, Ali SA, Kaur G, Mcgiven J, et al. Rapid veterinary diagnosis of bovine reproductive infectious diseases from semen using paper-origami DNA microfluidics. ACS Sens. 2018;3:403–9.

    Article  CAS  PubMed  Google Scholar 

  17. Chow WHA, Mccloskey C, Tong Y, Hu L, You Q, Kelly CP, et al. Application of isothermal helicase-dependent amplification with a disposable detection device in a simple sensitive stool test for toxigenic clostridium difficile. J Mol Diagn. 2008;10:452–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shetty P, Ghosh D, Singh M, Tripathi A, Paul D. Rapid amplification of Mycobacterium tuberculosis DNA on a paper substrate. RSC Adv. 2016;6:56205–12.

    Article  CAS  Google Scholar 

  19. Lafleur LK, Bishop JD, Heiniger EK, Gallagher RP, Wheeler MD, Kauffman P, et al. A rapid, instrument-free, sample-to-result nucleic acid amplification test. Lab Chip. 2016;16:3777–87.

    Article  CAS  PubMed  Google Scholar 

  20. Toley BJ, Covelli I, Belousov Y, Ramachandran S, Kline E, Scarr N, et al. Isothermal strand displacement amplification (iSDA): a rapid and sensitive method of nucleic acid amplification for point-of-care diagnosis. Analyst. 2015;140:7540–9.

    Article  CAS  PubMed  Google Scholar 

  21. Choi JR, Hu J, Tang R, Gong Y, Feng S, Ren H, et al. An integrated paper-based sample-to-answer biosensor for nucleic acid testing at the point of care. Lab Chip. 2016;16:611–21.

    Article  CAS  PubMed  Google Scholar 

  22. Bender AT, Borysiak MD, Levenson AM, Lillis L, Boyle DS, Posner JD. Semiquantitative nucleic acid test with simultaneous isotachophoretic extraction and amplification. Anal Chem. 2018;90:7221–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tang R, Yang H, Gong Y, You M, Liu Z, Choi JR, et al. A fully disposable and integrated paper-based device for nucleic acid extraction, amplification and detection. Lab Chip. 2017;17:1270–9.

    Article  CAS  PubMed  Google Scholar 

  24. Phillips EA, Moehling TJ, Bhadra S, Ellington AD, Linnes JC. Strand displacement probes combined with isothermal nucleic acid amplification for instrument-free detection from complex samples. Anal Chem. 2018;90:6580–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Choi JR, Liu Z, Hu J, Tang R, Gong Y, Feng S, et al. Polydimethylsiloxane-paper hybrid lateral flow assay for highly sensitive point-of-care nucleic acid testing. Anal Chem. 2016;88:6254–64.

    Article  CAS  PubMed  Google Scholar 

  26. He Y, Zeng K, Zhang S, Gurung AS, Baloda M, Zhang X, et al. Visual detection of gene mutations based on isothermal strand-displacement polymerase reaction and lateral flow strip. Biosens Bioelectron. 2012;31:310–5.

    Article  CAS  PubMed  Google Scholar 

  27. Xu Y, Liu Y, Wu Y, Xia X, Liao Y, Li Q. Fluorescent probe-based lateral flow assay for multiplex nucleic acid detection. Anal Chem. 2014;86:5611–4.

    Article  CAS  PubMed  Google Scholar 

  28. Dragan AI, Pavlovic R, Mcgivney JB, Casas-Finet JR, Bishop ES, Strouse RJ, et al. SYBR Green I: fluorescence properties and interaction with DNA. J Fluoresc. 2012;22:1189–99.

    Article  CAS  PubMed  Google Scholar 

  29. Cosa G, Focsaneanu K-S, Mclean JRN, Mcnamee JP, Scaiano JC. Photophysical properties of fluorescent DNA-dyes bound to single- and double-stranded DNA in aqueous buffered solution. Photochem Photobiol. 2007;73:585–99.

    Article  Google Scholar 

  30. Roy S, Mohd-Naim NF, Safavieh M, Ahmed MU. Colorimetric nucleic acid detection on paper microchip using loop mediated isothermal amplification and crystal violet dye. ACS Sens. 2017;2:1713–20.

    Article  CAS  PubMed  Google Scholar 

  31. Wang AG, Dong T, Mansour H, Matamoros G, Sanchez AL, Li F. Paper-based DNA reader for visualized quantification of soil-transmitted helminth infections. ACS Sens. 2018;3:205–10.

    Article  CAS  PubMed  Google Scholar 

  32. Gootenberg JS, Abudayyeh OO, Lee JW, Essletzbichler P, Dy AJ, Joung J, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science. 2017;356:438–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gootenberg JS, Abudayyeh OO, Kellner MJ, Joung J, Collins JJ, Zhang F. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science. 2018;360:439–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Myhrvold C, Freije CA, Gootenberg JS, Abudayyeh OO, Metsky HC, Durbin AF, et al. Field-deployable viral diagnostics using CRISPR-Cas13. Science. 2018;360:444–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mao X, Ma Y, Zhang A, Zhang L, Zeng L, Liu G. Disposable nucleic acid biosensors based on gold nanoparticle probes and lateral flow strip. Anal Chem. 2009;81:1660–8.

    Article  CAS  PubMed  Google Scholar 

  36. Ali MM, Aguirre SD, Xu Y, Filipe CDM, Pelton R, Li Y. Detection of DNA using bioactive paper strips. Chem. Commun. 2009;0:6640–2.

  37. Hu J, Wang L, Li F, Han YL, Lin M, Lu TJ, et al. Oligonucleotide-linked gold nanoparticle aggregates for enhanced sensitivity in lateral flow assays. Lab Chip. 2013;13:4352.

    Article  CAS  PubMed  Google Scholar 

  38. Takalkar S, Baryeh K, Liu G. Fluorescent carbon nanoparticle-based lateral flow biosensor for ultrasensitive detection of DNA. Biosens Bioelectron. 2017;98:147–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Noor MO, Krull UJ. Camera-based ratiometric fluorescence transduction of nucleic acid hybridization with reagentless signal amplification on a paper-based platform using immobilized quantum dots as donors. Anal Chem. 2014;86:10331–9.

    Article  CAS  PubMed  Google Scholar 

  40. Noor MO, Hrovat D, Moazami-Goudarzi M, Espie GS, Krull UJ. Ratiometric fluorescence transduction by hybridization after isothermal amplification for determination of zeptomole quantities of oligonucleotide biomarkers with a paper-based platform and camera-based detection. Anal Chim Acta. 2015;885:156–65.

    Article  CAS  PubMed  Google Scholar 

  41. Doughan S, Uddayasankar U, Krull UJ. A paper-based resonance energy transfer nucleic acid hybridization assay using upconversion nanoparticles as donors and quantum dots as acceptors. Anal Chim Acta. 2015;878:1–8.

    Article  CAS  PubMed  Google Scholar 

  42. Doughan S, Uddayasankar U, Peri A, Krull UJ. A paper-based multiplexed resonance energy transfer nucleic acid hybridization assay using a single form of upconversion nanoparticle as donor and three quantum dots as acceptors. Anal Chim Acta. 2017;962:88–96.

    Article  CAS  PubMed  Google Scholar 

  43. Lu J, Ge S, Ge L, Yan M, Yu J. Electrochemical DNA sensor based on three-dimensional folding paper device for specific and sensitive point-of-care testing. Electrochim Acta. 2012;80:334–41.

    Article  CAS  Google Scholar 

  44. Teengam P, Siangproh W, Tuantranont A, Vilaivan T, Chailapakul O, Henry CS. Electrochemical impedance-based DNA sensor using pyrrolidinyl peptide nucleic acids for tuberculosis detection. Anal Chim Acta. 2018;1044:102–9.

    Article  CAS  PubMed  Google Scholar 

  45. Li X, Scida K, Crooks RM. Detection of hepatitis B virus DNA with a paper electrochemical sensor. Anal Chem. 2015;87:9009–15.

    Article  CAS  PubMed  Google Scholar 

  46. Du Y, Pothukuchy A, Gollihar JD, Nourani A, Li B, Ellington AD. Coupling sensitive nucleic acid amplification with commercial pregnancy test strips. Angew Chem In Ed. 2017;129:1012–6.

    Article  Google Scholar 

  47. Scida K, Li B, Ellington AD, Crooks RM. DNA detection using origami paper analytical devices. Anal Chem. 2013;85:9713–20.

    Article  CAS  PubMed  Google Scholar 

  48. Allen PB, Arshad SA, Li B, Chen X, Ellington AD. DNA circuits as amplifiers for the detection of nucleic acids on a paperfluidic platform. Lab Chip. 2012;12:2951–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ying N, Ju C, Sun X, Li L, Chang H, Song G, et al. Lateral flow nucleic acid biosensor for sensitive detection of microRNAs based on the dual amplification strategy of duplex specific nuclease and hybridization chain reaction. PLoS One. 2017;12:e0185091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Green AA, Silver PA, Collins JJ, Yin P. Toehold switches: de-novo-designed regulators of gene expression. Cell. 2014;159:925–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pardee K, Green AA, Ferrante T, Cameron DE, Daleykeyser A, Yin P, et al. Paper-based synthetic gene networks. Cell. 2014;159:940–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pardee K, Green AA, Takahashi MK, Braff D, Lambert G, Lee JW, et al. Rapid, low-cost detection of Zika virus using programmable biomolecular components. Cell. 2016;165:1255–66.

    Article  CAS  PubMed  Google Scholar 

  53. Noh H, Phillips ST. Fluidic timers for time-dependent, point-of-care assays on paper. Anal Chem. 2010;82:8071–8.

    Article  CAS  PubMed  Google Scholar 

  54. Yamada K, Suzuki K, Citterio D. Text-displaying colorimetric paper-based analytical device. ACS Sens. 2017;2:1247–54.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study received a financial support from the National Sciences and Engineering Research Council of Canada, the Ontario Centres of Excellence, the Ontario Ministry of Research, Innovation and Science, and the Brock University Start-Up Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Published in the topical collection Young Investigators in (Bio-)Analytical Chemistry with guest editors Erin Baker, Kerstin Leopold, Francesco Ricci, and Wei Wang.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, T., Wang, G.A. & Li, F. Shaping up field-deployable nucleic acid testing using microfluidic paper-based analytical devices. Anal Bioanal Chem 411, 4401–4414 (2019). https://doi.org/10.1007/s00216-019-01595-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-01595-7

Keywords

Navigation