Skip to main content

Paper-Based Nucleic Acid Detection for Point-of-Care Diagnostics

  • Chapter
  • First Online:
Paper-Based Medical Diagnostic Devices

Part of the book series: Bioanalysis ((BIOANALYSIS,volume 10))

  • 766 Accesses

Abstract

Nucleic acid detection has widely been used in key biosensing applications starting from diagnostics, food and water safety, and forensics. Traditionally operated in the laboratory, it has become an essential method to detect nucleic acids sensitively and reliably. With the increasing need of performing the nucleic acid detection outside of the traditional laboratory settings, the concept of “Lab-on-a-Chip”, colloquially known as microfluidic chips, has emerged to offer a portable platform for the field-based diagnostics. Using a fraction of the reagents and short travel length of fluids, it has enabled a rapid progress in point-of-care diagnostics. However, there are still formidable challenges lie ahead. One of the key bottlenecks for a wider acceptance of microfluidics in the main stream diagnostics has been the material of devices and the peripherals required to run the diagnostic device. Currently, polydimethylsiloxane (PDMS) material is a commonly used material for microfluidic applications. Despite its outstanding optical properties and easiness of molding and bonding, this material has intrinsically hydrophobic properties that require a pressure source to drive the sample fluid into the microchannel unless it has been treated prior to filling to become hydrophilic temporarily. The material cost is another prohibiting factor for a wide-spread use of PDMS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 64.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Govindarajan, A.V., Ramachandran, S., Vigil, G.D., Yager, P., Bohringer, K.F.: A low cost point-of-care viscous sample preparation device for molecular diagnosis in the developing world; an example of microfluidic origami. Lab Chip 12, 174–181 (2012)

    Article  Google Scholar 

  2. Byrnes, S.A., Bishop, J.D., Lafleur, L., Buser, J.R., Lutz, B., Yager, P.: One-step purification and concentration of DNA in porous membranes for point-of-care applications. Lab Chip 15, 2647–2659 (2015)

    Article  Google Scholar 

  3. Fronczek, C.F., Park, T.S., Harshman, D.K., Nicolini, A.M., Yoon, J.Y.: Paper microfluidic extraction and direct smartphone-based identification of pathogenic nucleic acids from field and clinical samples. RSC Adv. 4, 11103–11110 (2014)

    Article  Google Scholar 

  4. Rodriguez, N.M., Linnes, J.C., Fan, A., Ellenson, C.K., Pollock, N.R., Klapperich, C.M.: Paper-based RNA extraction, in situ isothermal amplification, and lateral flow detection for low-cost, rapid diagnosis of influenza A (H1N1) from clinical specimens. Anal. Chem. 87, 7872–7879 (2015)

    Article  Google Scholar 

  5. Tang, R.H., Yang, H., Choi, J.R., Gong, Y., Hu, J., Feng, S.S., Pingguan-Murphy, B., Mei, Q.B., Xu, F.: Improved sensitivity of lateral flow assay using paper-based sample concentration technique. Talanta 152, 269–276 (2016)

    Article  Google Scholar 

  6. Rohrman, B.A., Richards-Kortum, R.R.: A paper and plastic device for performing recombinase polymerase amplification of HIV DNA. Lab Chip 12, 3082–3088 (2012)

    Article  Google Scholar 

  7. Cordray, M.S., Richards-Kortum, R.R.: A paper and plastic device for the combined isothermal amplification and lateral flow detection of Plasmodium DNA. Malaria J. 14 (2015)

    Google Scholar 

  8. Fang, X.E., Guan, M., Kong, J.L.: Rapid nucleic acid detection of Zaire ebolavirus on paper fluidics. RSC Adv. 5, 64614–64616 (2015)

    Article  Google Scholar 

  9. Rigano, L.A., Malamud, F., Orce, I.G., Filippone, M.P., Marano, M.R., do Amaral, A.M., Castagnaro, A.P., Vojnov, A.A.: Rapid and sensitive detection of Candidatus Liberibacter asiaticus by loop mediated isothermal amplification combined with a lateral flow dipstick. BMC Microbiol 14 (2014)

    Google Scholar 

  10. Kersting, S., Rausch, V., Bier, F.F., von Nickisch-Rosenegk, M.: Rapid detection of Plasmodium falciparum with isothermal recombinase polymerase amplification and lateral flow analysis. Malaria J. 13 (2014)

    Google Scholar 

  11. Crannell, Z., Castellanos-Gonzalez, A., Nair, G., Mejia, R., White, A.C., Richards-Kortum, R.: Multiplexed recombinase polymerase amplification assay to detect intestinal protozoa. Anal. Chem. 88, 1610–1616 (2016)

    Article  Google Scholar 

  12. Chen, Y.T., Cheng, N., Xu, Y.C., Huang, K.L., Luo, Y.B., Xu, W.T.: Point-of-care and visual detection of P. aeruginosa and its toxin genes by multiple LAMP and lateral flow nucleic acid biosensor. Biosens. Bioelectron. 81, 317–323 (2016)

    Google Scholar 

  13. Cunha, A.G., Gandini, A.: Turning polysaccharides into hydrophobic materials: a critical review. Part 1. Cellulose. Cellulose 17, 875–889 (2010)

    Google Scholar 

  14. Credou, J., Berthelot, T.: Cellulose: from biocompatible to bioactive material. J. Mater. Chem. B 2, 4767–4788 (2014)

    Article  Google Scholar 

  15. Ali, N., Rampazzo, R.D.P., Costa, A.D.T., Krieger, M.A.: Current nucleic acid extraction methods and their implications to point-of-care diagnostics. Biomed. Res. Int. (2017)

    Google Scholar 

  16. Tang, R.H., Yang, H., Choi, J.R., Gong, Y., Feng, S.S., Pingguan-Murphy, B., Huang, Q.S., Shi, J.L., Mei, Q.B., Xu, F.: Advances in paper-based sample pretreatment for point-of-care testing. Crit. Rev. Biotechnol. 37, 411–428 (2017)

    Article  Google Scholar 

  17. Jangam, S.R., Yamada, D.H., McFall, S.M., Kelso, D.M.: Rapid, point-of-care extraction of human immunodeficiency virus type 1 proviral DNA from Whole Blood for Detection by Real-time PCR. J. Clin. Microbiol. 47, 2363–2368 (2009)

    Article  Google Scholar 

  18. Linnes, J.C., Fan, A., Rodriguez, N.M., Lemieux, B., Kong, H., Klapperich, C.M.: Paper-based molecular diagnostic for Chlamydia trachomatis. RSC Adv. 4, 42245–42251 (2014)

    Article  Google Scholar 

  19. Hagan, K.A., Reedy, C.R., Uchimoto, M.L., Basu, D., Engel, D.A., Landers, J.P.: An integrated, valveless system for microfluidic purification and reverse transcription-PCR amplification of RNA for detection of infectious agents. Lab Chip 11, 957–961 (2011)

    Article  Google Scholar 

  20. Aveyard, J., Mehrabi, M., Cossins, A., Braven, H., Wilson, R.: One step visual detection of PCR products with gold nanoparticles and a nucleic acid lateral flow (NALF) device. Chem. Commun. (Camb), pp. 4251–4253 (2007)

    Google Scholar 

  21. Niemz, A., Ferguson, T.M., Boyle, D.S.: Point-of-care nucleic acid testing for infectious diseases. Trends Biotechnol. 29, 240–250 (2011)

    Article  Google Scholar 

  22. Liu, C.C., Geva, E., Mauk, M., Qiu, X.B., Abrams, W.R., Malamud, D., Curtis, K., Owen, S.M., Bau, H.H.: An isothermal amplification reactor with an integrated isolation membrane for point-of-care detection of infectious diseases. Analyst 136, 2069–2076 (2011)

    Article  Google Scholar 

  23. Zhang, L., Zhang, Y., Wang, C.Y., Feng, Q.A., Fan, F., Zhang, G.J., Kang, X.X., Qin, X.Z., Sun, J.S., Li, Y.G., Jiang, X.: Integrated microcapillary for sample-to-answer nucleic acid pretreatment. Amplification, Detect. Anal. Chem. 86, 10461–10466 (2014)

    Google Scholar 

  24. Linnes, J.C., Rodriguez, N.M., Liu, L., Klapperich, C.M.: Polyethersulfone improves isothermal nucleic acid amplification compared to current paper-based diagnostics. Biomed. Microdevices 18 (2016)

    Google Scholar 

  25. Rodriguez, N.M., Wong, W.S., Liu, L., Dewar, R., Klapperich, C.M.: A fully integrated paperfluidic molecular diagnostic chip for the extraction, amplification, and detection of nucleic acids from clinical samples. Lab Chip 16, 753–763 (2016)

    Article  Google Scholar 

  26. Magro, L., Jacquelin, B., Escadafal, C., Garneret, P., Kwasiborski, A., Manuguerra, J.C., Monti, F., Sakuntabhai, A., Vanhomwegen, J., Lafaye, P., Tabeling, P.: Paper-based RNA detection and multiplexed analysis for Ebola virus diagnostics. Sci. Rep-Uk 7 (2017)

    Google Scholar 

  27. Shetty, P., Ghosh, D., Singh, M., Tripathi, A., Paul, D.: Rapid amplification of Mycobacterium tuberculosis DNA on a paper substrate. RSC Adv. 6, 56205–56212 (2016)

    Article  Google Scholar 

  28. Chen, J.H., Zhou, S.G., Wen, J.L.: Disposable strip biosensor for visual detection of Hg2+ based on Hg2+ -triggered toehold binding and exonuclease III-assisted signal amplification. Anal. Chem. 86, 3108–3114 (2014)

    Article  Google Scholar 

  29. Huang, K.J., Shuai, H.L., Zhang, J.Z.: Ultrasensitive sensing platform for platelet-derived growth factor BB detection based on layered molybdenum selenide-graphene composites and exonuclease III assisted signal amplification. Biosens. Bioelectron. 77, 69–75 (2016)

    Article  Google Scholar 

  30. Deng, X.L., Wang, C., Gao, Y., Li, J.W., Wen, W., Zhang, X.H., Wang, S.F.: Applying strand displacement amplification to quantum dots-based fluorescent lateral flow assay strips for HIV-DNA detection. Biosens. Bioelectron. 105, 211–217 (2018)

    Article  Google Scholar 

  31. Phillips, E.A., Moehling, T.J., Bhadra, S., Ellington, A.D., Linnes, J.C.: Strand displacement probes combined with isothermal nucleic acid amplification for instrument-free detection from complex samples. Anal. Chem. 90, 6580–6586 (2018)

    Article  Google Scholar 

  32. Toley, B.J., Covelli, I., Belousov, Y., Ramachandran, S., Kline, E., Scarr, N., Vermeulen, N., Mahoney, W., Lutza, B.R., Yagera, P.: Isothermal strand displacement amplification (iSDA): a rapid and sensitive method of nucleic acid amplification for point-of-carediagnosis. Analyst 140, 7540–7549 (2015)

    Article  Google Scholar 

  33. Rohrman, B.A., Leautaud, V., Molyneux, E., Richards-Kortum, R.R.: A lateral flow assay for quantitative detection of amplified HIV-1 RNA. Plos One 7 (2012)

    Google Scholar 

  34. Liu, H.X., Xing, D., Zhou, X.M.: Point of care nucleic acid detection of viable pathogenic bacteria with isothermal RNA amplification based paper biosensor. Proc. Spie 9230 (2014)

    Google Scholar 

  35. Lee, H.H., Dineva, M.A., Chua, Y.L., Ritchie, A.V., Ushiro-Lumb, I., Wisniewski, C.A.: Simple amplification-based assay: a nucleic acid based point-of-care platform for HIV-1 testing. J. Infect. Dis. 201, S65–S72 (2010)

    Article  Google Scholar 

  36. de Paz, H.D., Brotons, P., Munoz-Almagro, C.: Molecular isothermal techniques for combating infectious diseases: towards low-cost point-of-care diagnostics. Expert. Rev. Mol. Diagn. 14, 827–843 (2014)

    Article  Google Scholar 

  37. Lafleur, L.K., Bishop, J.D., Heiniger, E.K., Gallagher, R.P., Wheeler, M.D., Kauffman, P., Zhang, X.H., Kline, E.C., Buser, J.R., Kumar, S., Byrnes, S.A., Vermeulen, N.M.J., Scarr, N.K., Belousov, Y., Mahoney, W., Toley, B.J., Ladd, P.D., Lutz, B.R., Yager, P.: A rapid, instrument-free, sample-to-result nucleic acid amplification test. Lab Chip 16, 3777–3787 (2016)

    Article  Google Scholar 

  38. Craw, P., Balachandran, W.: Isothermal nucleic acid amplification technologies for point-of-care diagnostics: a critical review. Lab Chip 12, 2469–2486 (2012)

    Article  Google Scholar 

  39. Giljohann, D.A., Mirkin, C.A.: Drivers of biodiagnostic development. Nature 462, 461–464 (2009)

    Article  Google Scholar 

  40. Gong, M.M., Nosrati, R., San Gabriel, M.C., Zini, A., Sinton, D.: Direct DNA analysis with paper-based ion concentration polarization. J. Am. Chem. Soc. 137, 13913–13919 (2015)

    Google Scholar 

  41. Nosrati, R., Gong, M.M., Gabriel, M.C.S., Zini, A., Sinton, D.: Paper-based sperm DNA integrity analysis. Anal. Methods 8, 6260–6264 (2016)

    Article  Google Scholar 

  42. Rosenfeld, T., Bercovici, M.: Amplification-free detection of DNA in a paper-based microfluidic device using electroosmotically balanced isotachophoresis. Lab Chip 18, 861–868 (2018)

    Article  Google Scholar 

  43. Li, X., Luo, L., Crooks, R.M.: Low-voltage paper isotachophoresis device for DNA focusing. Lab Chip 15, 4090–4098 (2015)

    Article  Google Scholar 

  44. Li, X., Luo, L., Crooks, R.M.: Faradaic ion concentration polarization on a paper fluidic platform. Anal. Chem. 89, 4294–4300 (2017)

    Article  Google Scholar 

  45. Ma, B., Song, Y.Z., Niu, J.C., Wu, Z.Y.: Highly efficient sample stacking by enhanced field amplification on a simple paper device. Lab Chip 16, 3460–3465 (2016)

    Article  Google Scholar 

  46. Rosenfeld, T., Bercovici, M.: 1000-fold sample focusing on paper-based microfluidic devices. Lab Chip 14, 4465–4474 (2014)

    Article  Google Scholar 

  47. Anand, R.K., Sheridan, E., Knust, K.N., Crooks, R.M.: Bipolar electrode focusing: faradaic ion concentration polarization. Anal. Chem. 83, 2351–2358 (2011)

    Article  Google Scholar 

  48. Sheridan, E., Hlushkou, D., Anand, R.K., Laws, D.R., Tallarek, U., Crooks, R.M.: Label-free electrochemical monitoring of concentration enrichment during bipolar electrode focusing. Anal. Chem. 83, 6746–6753 (2011)

    Article  Google Scholar 

  49. Tu, Y.Y., Hsieh, M.M., Chang, S.Y.: Sensitive detection of piperazinyl phenothiazine drugs by field-amplified sample stacking in capillary electrophoresis with dispersive liquid-liquid microextraction. Electrophoresis 36, 2828–2836 (2015)

    Article  Google Scholar 

  50. Choi, J.R., Yong, K.W., Tang, R.H., Gong, Y., Wen, T., Li, F., Pingguan-Murphy, B., Bai, D., Xu, F.: Advances and challenges of fully integrated paper-based point-of-care nucleic acid testing. Trac-Trend Anal. Chem. 93, 37–50 (2017)

    Article  Google Scholar 

  51. Choi, J.R., Tang, R.H., Wang, S.Q., Abas, W.A.W., Pingguan-Murphy, B., Xu, F.: Paper-based sample-to-answer molecular diagnostic platform for point-of-care diagnostics. Biosens. Bioelectron. 74, 427–439 (2015)

    Article  Google Scholar 

  52. Hongwarittorrn, I., Chaichanawongsaroj, N., Laiwattanapaisal, W.: Semi-quantitative visual detection of loop mediated isothermal amplification (LAMP)-generated DNA by distance-based measurement on a paper device. Talanta 175, 135–142 (2017)

    Article  Google Scholar 

  53. Park, B.H., Oh, S.J., Jung, J.H., Choi, G., Seo, J.H., Kim, D.H., Lee, E.Y., Seo, T.S.: An integrated rotary microfluidic system with DNA extraction, loop-mediated isothermal amplification, and lateral flow strip based detection for point-of-care pathogen diagnostics. Biosens. Bioelectron. 91, 334–340 (2017)

    Article  Google Scholar 

  54. Connelly, J.T., Rolland, J.P., Whitesides, G.M.: “Paper Machine” for molecular diagnostics. Anal. Chem. 87, 7595–7601 (2015)

    Article  Google Scholar 

  55. Choi, J.R., Hu, J., Tang, R.H., Gong, Y., Feng, S.S., Ren, H., Wen, T., Li, X.J., Abas, W.A.W., Pingguan-Murphy, B., Xu, F.: An integrated paper-based sample-to-answer biosensor for nucleic acid testing at the point of care. Lab Chip 16, 611–621 (2016)

    Article  Google Scholar 

  56. Tang, R.H., Yang, H., Gong, Y., You, M.L., Liu, Z., Choi, J.R., Wen, T., Qu, Z.G., Mei, Q.B., Xu, F.: A fully disposable and integrated paper-based device for nucleic acid extraction, amplification and detection. Lab Chip 17, 1270–1279 (2017)

    Article  Google Scholar 

  57. Xu, G.L., Nolder, D., Reboud, J., Oguike, M.C., van Schalkwyk, D.A., Sutherland, C.J., Cooper, J.M.: Paper-origami-based multiplexed malaria diagnostics from whole blood. Angew. Chem. Int. Edit. 55, 15250–15253 (2016)

    Article  Google Scholar 

  58. Mumford, R.A., Macarthur, R., Boonham, N.: The role and challenges of new diagnostic technology in plant biosecurity. Food Secur 8, 103–109 (2016)

    Article  Google Scholar 

  59. Zhao, Y.X., Chen, F., Li, Q., Wang, L.H., Fan, C.H.: Isothermal amplification of nucleic acids. Chem. Rev. 115, 12491–12545 (2015)

    Article  Google Scholar 

  60. Scheler, O., Glynn, B., Kurg, A.: Nucleic acid detection technologies and marker molecules in bacterial diagnostics. Expert Rev. Mol. Diagn. 14, 489–500 (2014)

    Article  Google Scholar 

  61. Pardee, K., Green, A.A., Ferrante, T., Cameron, D.E., DaleyKeyser, A., Yin, P., Collins, J.J.: Paper-based synthetic gene networks. Cell 159, 940–954 (2014)

    Article  Google Scholar 

  62. Takahashi, M.K., Tan, X., Dy, A.J., Braff, D., Akana, R.T., Furuta, Y., Donghia, N., Ananthakrishnan, A., Collins, J.J.: A low-cost paper-based synthetic biology platform for analyzing gut microbiota and host biomarkers. Nat. Commun. 9 (2018)

    Google Scholar 

  63. Gootenberg, J.S., Abudayyeh, O.O., Lee, J.W., Essletzbichler, P., Dy, A.J., Joung, J., Verdine, V., Donghia, N., Daringer, N.M., Freije, C.A., Myhrvold, C., Bhattacharyya, R.P., Livny, J., Regev, A., Koonin, E.V., Hung, D.T., Sabeti, P.C., Collins, J.J., Zhang, F.: Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 356, 438–442 (2017)

    Article  Google Scholar 

  64. Myhrvold, C., Freije, C.A., Gootenberg, J.S., Abudayyeh, O.O., Metsky, H.C., Durbin, A.F., Kellner, M.J., Tan, A.L., Paul, L.M., Parham, L.A., Garcia, K.F., Barnes, K.G., Chak, B., Mondini, A., Nogueira, M.L., Isern, S., Michael, S.F., Lorenzana, I., Yozwiak, N.L., MacInnis, B.L., Bosch, I., Gehrke, L., Zhang, F., Sabeti, P.C.: Field-deployable viral diagnostics using CRISPR-Cas13. Science 360, 444–448 (2018)

    Article  Google Scholar 

  65. Gootenberg, J.S., Abudayyeh, O.O., Kellner, M.J., Joung, J., Collins, J.J., Zhang, F.: Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science 360, 439–444 (2018)

    Article  Google Scholar 

  66. Pardee, K., Green, A.A., Takahashi, M.K., Braff, D., Lambert, G., Lee, J.W., Ferrante, T., Ma, D., Donghia, N., Fan, M., Daringer, N.M., Bosch, I., Dudley, D.M., O’Connor, D.H., Gehrke, L., Collins, J.J.: Rapid, low-cost detection of Zika virus using programmable biomolecular components. Cell 165, 1255–1266 (2016)

    Article  Google Scholar 

  67. Green, A.A., Silver, P.A., Collins, J.J., Yin, P.: Toehold switches: de-novo-designed regulators of gene expression. Cell 159, 925–939 (2014)

    Article  Google Scholar 

  68. Qiu, X.Y., Zhu, L.Y., Zhu, C.S., Ma, J.X., Hou, T., Wu, X.M., Xie, S.S., Min, L., Tan, D.A., Zhang, D.Y., Zhu, L.Y.: Highly effective and low-cost MicroRNA detection with CRISPR-Cas9. ACS Synth. Biol. 7, 807–813 (2018)

    Article  Google Scholar 

  69. Zuo, X.L., Fan, C.H., Chen, H.Y.: BIOSENSING CRISPR-powered diagnostics. Nat. Biomed. Eng. 1 (2017)

    Google Scholar 

  70. Chen, J.S., Ma, E.B., Harrington, L.B., Da Costa, M., Tian, X.R., Palefsky, J.M., Doudna, J.A.: CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 360, 436–439 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Ak Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, J., Song, YA. (2021). Paper-Based Nucleic Acid Detection for Point-of-Care Diagnostics. In: Lee, J.H. (eds) Paper-Based Medical Diagnostic Devices. Bioanalysis, vol 10. Springer, Singapore. https://doi.org/10.1007/978-981-15-8723-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8723-8_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8722-1

  • Online ISBN: 978-981-15-8723-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics