Skip to main content
Log in

A gold nanoparticle-based colorimetric strategy coupled to duplex-specific nuclease signal amplification for the determination of microRNA

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors report on a new gold nanoparticle-based colorimetric assay for microRNA (miRNA). It is based on duplex-specific nuclease (DSN)-assisted signal amplification. Following hybridization between target miRNA and its complementary single-stranded DNA (ssDNA), the ssDNA in the DNA:RNA hybrid is selectively cleaved by DSN to produce small DNA fragments. Target microRNA is thus released and will initiate another round of hybridization and DSN digestion. In this manner, each miRNA target can specifically trigger several cycles of hybridization and DSN cleavages to yield numerous small fragments of DNA oligonucleotides. The short DNA fragments (unlike the uncleaved ssDNA probe)  exhibit superior capability for stabilizing unmodified AuNP against salt-induced aggregation to the uncleaved ssDNA probe, with an accompanying color change from blue to red. These findings are exploited in a colorimetric assay for miRNA that has a 10 fmol detection limit.

A gold nanoparticle-based colorimetric strategy for the detection of microRNA has been established coupled with duplex-specific nuclease signal amplification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li YY, Schluesener HJ, Xu SQ (2010) Gold nanoparticle-based biosensors. Gold Bull 43:29–41. doi:10.1007/BF03214964

    Article  Google Scholar 

  2. Richards SJ, Gibson MI (2014) Optimization of the polymer coating for glycosylated gold nanoparticle biosensors to ensure stability and rapid optical readouts. ACS Macro Lett 3:1004–1008. doi:10.1021/mz5004882

    Article  CAS  Google Scholar 

  3. Ho JA, Chang HC, Shih NY, Wu LC, Chang YF, Chen CC, Chou C (2010) Diagnostic detection of human lung cancer-associated antigen using a gold nanoparticle-based electrochemical immunosensor. Anal Chem 82:5944–5950. doi:10.1021/ac1001959

    Article  CAS  Google Scholar 

  4. Drescher D, Giesen C, Traub H, Panne U, Kneipp J, Jakubowski N (2012) Quantitative imaging of gold and silver nanoparticles in single eukaryotic cells by laser ablation ICP-MS. Anal Chem 84:9684–9688. doi:10.1021/ac302639c

    Article  CAS  Google Scholar 

  5. Hughes SI, Dasary SSR, Singh AK, Glenn Z, Jamison H, Ray PC, Yu HT (2013) Sensitive and selective detection of trivalent chromium using hyper Rayleigh scattering with 5,5′-dithio-bis-(2-nitrobenzoic acid)-modified gold nanoparticles. Sensors Actuators B 178:514–519. doi:10.1016/j.snb.2012.12.003

    Article  CAS  Google Scholar 

  6. Liu JC, Guan Z, Lv ZZ, Jiang XL, Yang SM, Chen AL (2014) Improving sensitivity of gold nanoparticle based fluorescence quenching and colorimetric aptasensor by using water resuspended gold nanoparticle. Biosens Bioelectron 52:265–270. doi:10.1016/j.bios.2013.08.059

    Article  CAS  Google Scholar 

  7. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold Nonaparticles. Science 277:1078–1081. doi:10.1126/science.277.5329.1078

    Article  CAS  Google Scholar 

  8. Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547–1562. doi:10.1021/cr030067f

    Article  CAS  Google Scholar 

  9. Sato K, Hosokawa K, Maeda M (2003) Rapid aggregation of gold nanoparticles induced by non-cross-linking DNA hybridization. J Am Chem Soc 125:8102–8103. doi:10.1021/ja034876s

    Article  CAS  Google Scholar 

  10. Sato K, Hosokawa K, Maeda M (2005) Non-cross-linking gold nanoparticle aggregation as a detection method for single-base substitutions. Nucleic Acids Res 33:e4. doi:10.1093/nar/gni007

    Article  Google Scholar 

  11. Li HX, Rothberg L (2004) Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. PNAS 101:14036–14039. doi:10.1073/pnas.0406115101

    Article  CAS  Google Scholar 

  12. Li HX, Rothberg LJ (2004) Label-free colorimetric detection of specific sequences in genomic DNA amplified by the polymerase chain reaction. J Am Chem Soc 126:10958–10961. doi:10.1021/ja048749n

    Article  CAS  Google Scholar 

  13. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20. doi:10.1016/j.cell.2004.12.035

    Article  CAS  Google Scholar 

  14. Arenz C (2006) MicroRNAs-future drug targets ? Angew Chem Int Ed 45:5048–5050. doi:10.1002/anie.200601537

    Article  CAS  Google Scholar 

  15. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838. doi:10.1038/nature03702

    Article  CAS  Google Scholar 

  16. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O’Briant KC, Allen A, Lin DW, Urban N, Drescher CW, Knudsen BS, Stirewalt DL, Gentleman R, Vessella RL, Nelson PS, Martin DB, Tewari M (2008) Circulating microRNAs as stable blood-based markers for cancer detection. PNAS 105:10513–10518. doi:10.1073/pnas.0804549105

    Article  CAS  Google Scholar 

  17. Cissell KA, Shrestha S, Deo SK (2007) MicroRNA detection: challenges for the analytical chemist. Anal Chem 79:4754–4761. doi:10.1021/ac0719305

    Article  CAS  Google Scholar 

  18. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858. doi:10.1126/science.1064921

    Article  CAS  Google Scholar 

  19. Válóczi A, Hornyik C, Varga N, Burgyán J, Kauppinen S, Havelda Z (2004) Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes. Nucleic Acids Res 32:e175. doi:10.1093/nar/gnh171

    Article  Google Scholar 

  20. Thomson JM, Parker J, Perou CM, Hammond SM (2004) A custom microarray platform for analysis of microRNA gene expression. Nat Methods 1:47–53. doi:10.1038/nmeth704

    Article  CAS  Google Scholar 

  21. Lee I, Ajay SS, Chen HM, Maruyama A, Wang NL, McInnis MG, Athey BD (2008) Discriminating single-base difference miRNA expressions using microarray probe design guru (ProDeG). Nucleic Acids Res 36:e27. doi:10.1093/nar/gkm1165

    Article  Google Scholar 

  22. Li J, Yao B, Huang H, Wang Z, Sun CH, Fan Y, Chang Q, Li SL, Wang X, Xi JZ (2009) Real-time polymerase chain reaction microRNA detection based on enzymatic stem-loop probes ligation. Anal Chem 81:5446–5451. doi:10.1021/ac900598d

    Article  CAS  Google Scholar 

  23. Allawi HT, Dahlberg JE, Olson S, Lund E, Olson M, Ma WP, Takova T, Neri BP, Lyamichev VI (2004) Quantitation of microRNAs using a modified invader assay. RNA 10:1153–1161. doi:10.1261/rna.5250604

    Article  CAS  Google Scholar 

  24. Hartig JS, Grüne I, Najafi-Shoushtari SH, Famulok M (2004) Sequence-specific detection of miRNAs by signal-amplifying ribozymes. J Am Chem Soc 126:722–723. doi:10.1021/ja038822u

    Article  CAS  Google Scholar 

  25. Cheng YQ, Zhang X, Li ZP, Jiao XX, Wang YC, Zhang YL (2009) Highly sensitive determination of microRNA using target-primed and branched rolling-circle amplification. Angew Chem Int Ed 48:3268–3272. doi:10.1002/anie.200805665

    Article  CAS  Google Scholar 

  26. Zhang XB, Liu CH, Sun LB, Duan XR, Li ZP (2015) Lab on a single microbead: an ultrasensitive detection strategy enabling microRNA analysis at the single-molecule level. Chem Sci 6:6213–6218. doi:10.1039/c5sc02641e

    Article  CAS  Google Scholar 

  27. Shi QN, Shi YP, Pan Y, Yue ZF, Zhang H, Yi CQ (2015) Colorimetric and bare eye determination of urinary methylamphetamine based on the use of aptamers and the salt-induced aggregation of unmodified gold nanoparticles. Microchim Acta 182:505–511. doi:10.1007/s00604-014-1349-8

    Article  CAS  Google Scholar 

  28. Lepoitevin M, Lemouel M, Bechelany M, Janot JM, Balme S (2015) Gold nanoparticles for the bare-eye based and spectrophotometric detection of proteins, polynucleotides and DNA. Microchim Acta 182:1223–1229. doi:10.1007/s00604-014-1408-1

    Article  CAS  Google Scholar 

  29. Zhou DD, Xie GM, Gao XQ, Chen XP, Zhang X (2016) Colorimetric determination of staphylococcal enterotoxin B via DNAzyme-guided growth of gold nanoparticles. Microchim Acta. doi:10.1007/s00604-016-1919-z

    Google Scholar 

  30. Li RD, Yin BC, Ye BC (2016) Ultrasensitive, colorimetric detection of microRNAs based on isothermal exponential amplification reaction-assisted gold nanoparticle amplification. Biosens Bioelectron 86:1011–1016. doi:10.1016/j.bios.2016.07.042

    Article  CAS  Google Scholar 

  31. Guo S, Yang F, Zhang YL, Ning Y, Yao QF, Zhang GJ (2014) Amplified fluorescence sensing of miRNA by combination of graphene oxide with duplex-specific nuclease. Anal Methods 6:3598–3603. doi:10.1039/c4ay00345d

    Article  CAS  Google Scholar 

  32. Liu L, Gao YP, Liu HP, Xia N (2015) An ultrasensitive electrochemical miRNAs sensor based on miRNAs-initiated cleavage of DNA by duplex-specific nuclease and signal amplification of enzyme plus redox cycling reaction. Sensors Actuators B 208:137–142. doi:10.1016/j.snb.2014.11.023

    Article  CAS  Google Scholar 

  33. Wang Q, Li RD, Yin BC, Ye BC (2015) Colorimetric detection of sequence-specific microRNA based on duplex-specific nuclease-assisted nanoparticle amplification. Analyst 140:6306–6312. doi:10.1039/c5an01350j

    Article  CAS  Google Scholar 

  34. Grabar KC, Freeman RG, Hommer MB, Natan MJ (1995) Preparation and characterization of Au colloid monolayers. Anal Chem 67:735–743. doi:10.1021/ac00100a008

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The project is supported by the National Natural Science Foundation of China (21405032) and the Natural Science Foundation of Hebei Province (B2014201162 and B2016201052).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-xia Jia or Qing-gui Li.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 423 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Hy., Yang, L., Zhou, Xy. et al. A gold nanoparticle-based colorimetric strategy coupled to duplex-specific nuclease signal amplification for the determination of microRNA. Microchim Acta 184, 525–531 (2017). https://doi.org/10.1007/s00604-016-2030-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-2030-1

Keywords

Navigation