Skip to main content

Advertisement

Log in

Synergic effect of Pt-Co nanoparticles and a dopamine derivative in a nanostructured electrochemical sensor for simultaneous determination of N-acetylcysteine, paracetamol and folic acid

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A carbon paste electrode (CPE) was modified with Pt-Co nanoparticles and 2-(3,4-dihydroxyphenethyl)isoindoline-1,3-dione (3,4-DHPID) and then used for determination of N-acetylcysteine (N-AC) in the presence of paracetamol (PC) and folic acid (FA). The Pt-Co nanoparticles were synthesized by the polyol method and characterized by X-ray diffraction, energy dispersive X-ray analysis and transmission electron microscopy. The modified CPE displays good electrocatalytic activity towards the electrooxidation of N-AC in solution of pH 7.0. It was applied to the determination of N-AC in the presence of PC and FA (with well separated signals peaking at 0.2, 0.55 and 0.86 V vs. Ag/AgCl) by using square wave voltammetry. The peak currents are linearly dependent on the concentrations of N-AC, PC and FA in the respective ranges from 0.07 to 500, 1.0 to 850, and 2.0 to 550 μmol·L−1, with detection limits of 0.009, 0.6 and 0.8 μmol·L−1. The modified CPE was applied to the determination of N-AC, PC and FA in (spiked) pharmaceutical and biological samples.

Pt-Co nanoparticles and 2-(3,4-dihydroxyphenethyl)isoindoline-1,3-dione were used for modification of a carbon paste electrode which then was used for sensitive determination of N-actylcysteine in the presence of paracetamol and folic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sanghavi BJ, Moore JA, Chávez JL, Hagen JA, Kelley-Loughnane N, Chou C-F, Swami NS (2016) Aptamer-functionalized nanoparticles for surface immobilization-free electrochemical detection of cortisol in a microfluidic device. Biosens Bioelectron 78:244–252

    Article  CAS  Google Scholar 

  2. Yola ML, Eren T, Atar N (2014) Molecularly imprinted electrochemical biosensor based on Fe@ Au nanoparticles involved in 2-aminoethanethiol functionalized multi-walled carbon nanotubes for sensitive determination of cefexime in human plasma. Biosens Bioelectron 60:277–285

    Article  CAS  Google Scholar 

  3. Sanghavi BJ, Wolfbeis OS, Hirsch T, Swami NS (2015) Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters. Microchim Acta 182(1–2):1–41

    Article  CAS  Google Scholar 

  4. Gupta VK, Yola ML, Qureshi MS, Solak AO, Atar N, Üstündağ Z (2013) A novel impedimetric biosensor based on graphene oxide/gold nanoplatform for detection of DNA arrays. Sensors Actuators B Chem 188:1201–1211

    Article  CAS  Google Scholar 

  5. Shahrokhian S, Fotouhi L (2007) Carbon paste electrode incorporating multi-walled carbon nanotube/cobalt salophen for sensitive voltammetric determination of tryptophan. Sensors Actuators B Chem 123(2):942–949

    Article  CAS  Google Scholar 

  6. Zare H, Nasirizadeh N, Ardakani MM (2005) Electrochemical properties of a tetrabromo-p-benzoquinone modified carbon paste electrode. Application to the simultaneous determination of ascorbic acid, dopamine and uric acid. J Electroanal Chem 577(1):25–33

    Article  CAS  Google Scholar 

  7. Jamali T, Karimi-Maleh H, Khalilzadeh MA (2014) A novel nanosensor based on Pt: Co nanoalloy ionic liquid carbon paste electrode for voltammetric determination of vitamin B 9 in food samples. LWT- Food Sci Technol 57(2):679–685

    Article  CAS  Google Scholar 

  8. Fouladgar M, Karimi-Maleh H, Hosseinzadeh R (2013) Novel nanostructured electrochemical sensor for voltammetric determination of N-acetylcysteine in the presence of high concentrations of tryptophan. Ionics 19(4):665–672

    Article  CAS  Google Scholar 

  9. Dodd S, Dean O, Copolov DL, Malhi GS, Berk M (2008) N-acetylcysteine for antioxidant therapy: pharmacology and clinical utility. Expert Opin Biol Ther 8(12):1955–1962

    Article  CAS  Google Scholar 

  10. Keyvanfard M, Ensafi AA, Karimi-Maleh H, Alizad K (2012) Modified multiwalled carbon nanotubes paste electrode as a sensor for the electrocatalytic determination of N-acetylcysteine in the presence of high concentrations of folic acid. Anal Methods 4(10):3268–3274

    Article  CAS  Google Scholar 

  11. Wang X, Wen Y, Lu L, Xu J, Zhang L, Yao Y, He H (2014) A novel L‐cysteine electrochemical sensor using sulfonated graphene‐poly (3, 4‐ethylenedioxythiophene) composite film decorated with gold nanoparticles. Electroanalysis 26(3):648–655

    Article  CAS  Google Scholar 

  12. Yao Y, Zhang L, Xu J, Wang X, Duan X, Wen Y (2014) Rapid and sensitive stripping voltammetric analysis of methyl parathion in vegetable samples at carboxylic acid-functionalized SWCNTs–β-cyclodextrin modified electrode. J Electroanal Chem 713:1–8

    Article  CAS  Google Scholar 

  13. Atta NF, El-Kady MF, Galal A (2010) Simultaneous determination of catecholamines, uric acid and ascorbic acid at physiological levels using poly (N-methylpyrrole)/Pd-nanoclusters sensor. Anal Biochem 400(1):78–88

    Article  CAS  Google Scholar 

  14. Shahrokhian S, Ghalkhani M, Amini MK (2009) Application of carbon-paste electrode modified with iron phthalocyanine for voltammetric determination of epinephrine in the presence of ascorbic acid and uric acid. Sensors Actuators B Chem 137(2):669–675

    Article  CAS  Google Scholar 

  15. Beitollahi H, Mohadesi A, Mohammadi S, Pahlavan A, Karimi-Maleh H, Akbari A (2012) New voltammetric strategy for determination of dopamine in the presence of high concentrations of acetaminophen, folic acid and N-acetylcysteine. J Mol Liq 169:130–135

    Article  CAS  Google Scholar 

  16. Ensafi AA, Karimi-Maleh H, Mallakpour S, Hatami M (2011) Simultaneous determination of N-acetylcysteine and acetaminophen by voltammetric method using N-(3, 4-dihydroxyphenethyl)-3, 5-dinitrobenzamide modified multiwall carbon nanotubes paste electrode. Sensors Actuators B Chem 155(2):464–472

    Article  CAS  Google Scholar 

  17. Galus Z (1976) Fundamentals of electrochemical analysis. Halsted, Ellis Horwood

    Google Scholar 

  18. Arabali V, Karimi-Maleh H, Beitollahi H, Moradi R, Ebrahimi M, Ahmar H (2015) A nanostructure-based electrochemical sensor for square wave voltammetric determination of N-acetylcysteine in pharmaceutical and biological samples. Ionics 21(4):1153–1161

    Article  CAS  Google Scholar 

  19. Moghaddam AB, Mohammadi A, Mohammadi S, Rayeji D, Dinarvand R, Baghi M, Walker RB (2010) The determination of acetaminophen using a carbon nanotube: graphite-based electrode. Microchim Acta 171(3–4):377–384

    Article  CAS  Google Scholar 

  20. Wei S, Zhao F, Xu Z, Zeng B (2006) Voltammetric determination of folic acid with a multi-walled carbon nanotube-modified gold electrode. Microchim Acta 152(3–4):285–290

    Article  CAS  Google Scholar 

  21. Keyvanfard M, Tahmasbi M, Karimi-Maleh H, Alizad K (2014) A voltammetric sensor with a multiwall carbon nanotube paste electrode and naphthol green as a mediator for the determination of N-actylcysteine in the presence of tryptophan. Chin J Catal 35(4):501–508

    Article  CAS  Google Scholar 

  22. Sun D, Zhang H (2007) Electrochemical determination of acetaminophen using a glassy carbon electrode coated with a single-wall carbon nanotube-dicetyl phosphate film. Microchim Acta 158(1–2):131–136

    Article  CAS  Google Scholar 

  23. Wang C, Li C, Ting L, Xu X, Wang C (2006) Application of a single-wall carbon nano-tube film electrode to the determination of trace amounts of folic acid. Microchim Acta 152(3–4):233–238

    Article  CAS  Google Scholar 

  24. Wang C, Li C, Wang F, Wang C (2006) Covalent modification of glassy carbon electrode with L-cysteine for the determination of acetaminophen. Microchim Acta 155(3–4):365–371

    Article  CAS  Google Scholar 

  25. Huang S-S, Tang H, Li B-F (1998) Electrochemistry of electropolymerized tetra (p-aminophenyl) porphyrin nickel film electrode and catalytic oxidation of acetaminophen. Microchim Acta 128(1–2):37–42

    Article  CAS  Google Scholar 

  26. Taherkhani A, Jamali T, Hadadzadeh H, Karimi-Maleh H, Beitollahi H, Taghavi M, Karimi F (2014) ZnO nanoparticle-modified ionic liquid-carbon paste electrodefor voltammetric determination of folic acid in food and pharmaceutical samples. Ionics 20(3):421–429

    Article  CAS  Google Scholar 

  27. Cheraghi S, Taher MA, Karimi‐Maleh H (2015) A novel strategy for determination of paracetamol in the presence of morphine using a carbon paste electrode modified with CdO nanoparticles and ionic liquids. Electroanalysis 28:366–377

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Iran National Science Foundation (INSF) for support of this work under project No. 92036148 and Graduate University of Advanced Technology, Kerman, Iran for their cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Karimi-Maleh.

Ethics declarations

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 3375 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimi-Maleh, H., Hatami, M., Moradi, R. et al. Synergic effect of Pt-Co nanoparticles and a dopamine derivative in a nanostructured electrochemical sensor for simultaneous determination of N-acetylcysteine, paracetamol and folic acid. Microchim Acta 183, 2957–2964 (2016). https://doi.org/10.1007/s00604-016-1946-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1946-9

Keywords

Navigation