Skip to main content
Log in

Green Iron Oxide Nanoparticles as a Modifier of Carbon Paste Electrode for Electrochemical Estimation of Paracetamol in Pharmaceutical Samples

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Iron oxide nanoparticles (IONPs) were green synthesized using an aqueous leaves extract of Christ’s thorn jujube and were characterized by TGA, FTIR, XRD, HRTEM and FESEM. A carbon paste electrode (CPE) modified with the synthesized iron oxide nanoparticles (IONPs–CPE) was fabricated. The new IONPs–CPE sensor was employed to investigate the electrochemical behavior of paracetamol (PA) in the BR buffer solution. The impact of supporting electrolyte, pH and scan rate has been contemplated. High electrocatalytic activity, low detection limit, good selectivity and stability appeared to the modified electrode towards PA determination. The LOD and LOQ of PA were about 0.287 and 0.871 µM with a linear dynamic range of 0.8–10 µM. In addition, the IONPs–CPE has been used to determine PA in commercial tablets samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. Goyal, R.N. and Singh, S.P., Voltammetric determination of paracetamol at C60-modified glassy carbon electrode, Electrochim. Acta, 2006, vol. 51, p. 3008.

    Article  CAS  Google Scholar 

  2. Bosch, M.E., Sánchez, A.R., Rojas, F.S., and Ojeda, C.B., Determination of paracetamol: historical evolution, J. Pharm. Biomed. Anal., 2006, vol. 42, p. 291.

    Article  CAS  Google Scholar 

  3. Moffat, A.C., In Clarke’s Isolation and Identification of Drugs, 2nd ed., London: Pharmaceutical Press, 1986, p. 492.

    Google Scholar 

  4. Srivastava, M.K., Ahmad, S., Singh, D., and Shukla, I.C., Titrimetric determination of dipyrone and paracetamol with potassium hexacyanoferrate (III) in an acidic medium, Analyst, 1985, vol. 110, p. 735.

    Article  CAS  Google Scholar 

  5. Ayora, C.M., Pascual, R.M., Ruiz, M.A., Fernández, D.C.M., and Molina, D.A., Fast determination of paracetamol by using a very simple photometric flow-through sensing device, J. Pharm. Biomed. Anal., 2000, vol. 22, p. 59.

    Article  Google Scholar 

  6. Vilchez, J., Blanc, R., Avidad, R., and Navalón, A., Spectrofluorimetric determination of paracetamol in pharmaceuticals and biological fluids, J. Pharm. Biomed. Anal., 1995, vol. 13, p. 1119.

    Article  CAS  Google Scholar 

  7. Lau, O.W., Luk, S.F., and Cheung, Y.M., Simultaneous determination of ascorbic acid, caffeine and paracetamol in drug formulations by differential-pulse voltammetry using a glassy carbon electrode, Analyst, 1989, vol. 114, p. 1047.

    Article  CAS  Google Scholar 

  8. Ravisankar, S., Vasudevan, M., Gandhimathi, M., and Suresh, B., Reversed phase HPLC method for the estimation of acetaminophen, ibuprofen and chlorzoxazone in formulations, Talanta, 1998, vol. 46, p. 1577.

    Article  CAS  Google Scholar 

  9. Roy, J., Saha, P., Sultana, S., and Kenyon, A.S., Rapid screening of marketed paracetamol tablets: use of thin-layer chromatography and a semiquantitative spot test, Bull. World Health Org., 1997, vol. 75, p. 19.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Knochen, M., Giglio, J., and Reis, B.F., Flow-injection spectrophotometric determination of paracetamol in tablets and oral solutions, J. Pharm. Biomed. Anal., 2003, vol. 33, p. 191.

    Article  CAS  Google Scholar 

  11. Ramos, M.L., Tyson, J.F., and Curran, D.J., Determination of acetaminophen by flow injection with on-line chemical derivatization: Investigations using visible and FTIR spectrophotometry, Anal. Chim. Acta, 1998, vol. 364, p. 107.

    Article  CAS  Google Scholar 

  12. Sun, D. and Zhang, H., Electrochemical determination of acetaminophen using a glassy carbon electrode coated with a single-wall carbon nanotube-dicetyl phosphate film, Microchim. Acta, 2007, vol. 158, p. 131.

    Article  CAS  Google Scholar 

  13. Li, M. and Jing, L., Electrochemical behavior of acetaminophen and its detection on the PANI–MWCNTs composite modified electrode, Electrochim. Acta, 2007, vol. 52, p. 3250.

    Article  CAS  Google Scholar 

  14. Felix, F.S., Brett, C.M., and Angnes, L., Carbon film resistor electrode for amperometric determination of acetaminophen in pharmaceutical formulations, J. Pharm. Biomed. Anal., 2007, vol. 43, p. 1622.

    Article  CAS  Google Scholar 

  15. Wang, C., Li, C., Wang, F., and Wang, C., Covalent modification of glassy carbon electrode with L-cysteine for the determination of acetaminophen, Microchim. Acta, 2006, vol. 155, p. 365.

    Article  CAS  Google Scholar 

  16. Norouzi, P., Dousty, F., Ganjali, M.R., and Daneshgar, P., Dysprosium nanowire modified carbon paste electrode for the simultaneous determination of naproxen and paracetamol: application in pharmaceutical formulation and biological fluid, Int. J. Electrochem. Sci., 2009, vol. 4, p. 1373.

    CAS  Google Scholar 

  17. Mazloum-Ardakani, M., Beitollahi, H., Ganjipour, B., Naeimi, H., and Nejati, M., Electrochemical and catalytic investigations of dopamine and uric acid by modified carbon nanotube paste electrode, Bioelectrochemistry, 2009, vol. 75, p. 1.

    Article  CAS  Google Scholar 

  18. Gómez-Caballero, A., Goicolea, M.A., and Barrio, R.J., Paracetamol voltammetric microsensors based on electrocopolymerized-molecularly imprinted film modified carbon fiber microelectrodes, Analyst, 2005, vol. 130, p. 1012.

    Article  Google Scholar 

  19. Safavi, A., Maleki, N., and Moradlou, O., A selective and sensitive method for simultaneous determination of traces of paracetamol and p-aminophenol in pharmaceuticals using carbon ionic liquid electrode, Electroanalysis, 2008, vol. 20, p. 2158.

    Article  CAS  Google Scholar 

  20. Atta, N.F. and El-Kady, M.F., Poly (3-methylthiophene)/palladium sub-micro-modified sensor electrode. Part II: voltammetric and EIS studies, and analysis of catecholamine neurotransmitters, ascorbic acid and acetaminophen, Talanta, 2009, vol. 79, p. 639.

    Article  CAS  Google Scholar 

  21. Goyal, R.N., Gupta, V.K., Oyama, M., and Bachheti, N., Differential pulse voltammetric determination of paracetamol at nanogold modified indium tin oxide electrode, Electrochem. Commun., 2005, vol. 7, p. 803.

    Article  CAS  Google Scholar 

  22. Lourenção, B.C., Medeiros, R.A., Rocha-Filho, R.C., Mazo, L.H., and Fatibello-Filho, O., Simultaneous voltammetric determination of paracetamol and caffeine in pharmaceutical formulations using a boron-doped diamond electrode, Talanta, 2009, vol. 78, p. 748.

    Article  Google Scholar 

  23. Fernández-Remolar, D.C., Iron oxides, hydroxides and oxy-hydroxides, in Encyclopedia of Astrobiology, Gargaud, M., Eds., Berlin, Heidelberg: Springer, 2015, p. 1268.

    Google Scholar 

  24. Kalambate, P.K., Sanghavi, B.J., Karna, S.P., and Srivastava, A.K., Simultaneous voltammetric determination of paracetamol and domperidone based on a graphene/platinum nanoparticles/nafion composite modified glassy carbon electrode, Sens. Actuators B, 2015, vol. 213, p. 285.

    Article  CAS  Google Scholar 

  25. Kang, X., Wang, J., Wu, H., Liu, J., Aksay, I.A., and Lin, Y., A graphene-based electrochemical sensor for sensitive detection of paracetamol, Talanta, 2010, vol. 81, p. 754.

    Article  CAS  Google Scholar 

  26. Goyal, R.N., Gupta, V.K., and Chatterjee, S., Voltammetric biosensors for the determination of paracetamol at carbon nanotube modified pyrolytic graphite electrode, Sens. Actuators B, 2010, vol. 149, p. 252.

    Article  CAS  Google Scholar 

  27. Tyszczuk-Rotko, K., Bęczkowska, I., Wójciak-Kosior, M., and Sowa, I., Simultaneous voltammetric determination of paracetamol and ascorbic acid using a boron-doped diamond electrode modified with Nafion and lead films, Talanta, 2014, vol. 129, p. 384.

    Article  CAS  Google Scholar 

  28. Bouabi, Y.E., Farahi, A., Achak, M., Zeroual, M., Hnini, K., El Houssame, S., and El Mhammedi, M.A., Electrocatalytic effect of fluoroapatite in reducing paracetamol at carbon paste electrode: analytical application, J. Taiwan. Inst. Chem. Eng., 2016, vol. 66, p. 33.

    Article  Google Scholar 

  29. Stakheev, A.Y., Shpiro, E.S., and Apijok, J., XPS and XAES study of titania-silica mixed oxide system, J. Phys. Chem., 1993, vol. 97, p. 5668.

    Article  CAS  Google Scholar 

  30. Chitravathi, S. and Munichandraiah, N., Voltammetric determination of paracetamol, tramadol and caffeine using poly (Nile blue) modified glassy carbon electrode, J. Electroanal. Chem., 2016, vol. 764, p. 93.

    Article  CAS  Google Scholar 

  31. Fan, Y., Liu, J.H., Lu, H.T., and Zhang, Q., Electrochemical behavior and voltammetric determination of paracetamol on Nafion/TiO2–graphene modified glassy carbon electrode, Colloids Surf. B, 2011, vol. 85, p. 289.

    Article  CAS  Google Scholar 

  32. Vinay, M.M. and Nayaka, Y.A., Iron oxide (Fe2O3) nanoparticles modified carbon paste electrode as an advanced material for electrochemical investigation of paracetamol and dopamine, J. Sci.: Adv. Mater. Devices, 2019, vol. 4, p. 442.

    Google Scholar 

  33. Thomas, T., Mascarenhas, R.J., Cotta, F., Guha, K.S., Swamy, B.K., Martis, P., and Mekhalif, Z., Poly (Patton and Reeder’s reagent) modified carbon paste electrode for the sensitive detection of acetaminophen in biological fluid and pharmaceutical formulations Colloids Surf. B, 2013, vol. 101, p. 91.

    Article  CAS  Google Scholar 

  34. Santos, A.M., Wong, A., Almeida, A.A., and Fatibello-Filho, O., Simultaneous determination of paracetamol and ciprofloxacin in biological fluid samples using a glassy carbon electrode modified with graphene oxide and nickel oxide nanoparticles, Talanta, 2017, vol. 174, p. 610.

    Article  Google Scholar 

  35. Madhuri, C., Kiranmai, S., Saritha, D., Rao, V.P., Madhavi, G., and Kusuma, H.S., Electrochemical determination of paracetamol at poly (orange dye) modified carbon paste electrode using cyclic voltammetry, J. Chem. Technol. Metall., 2019, vol. 54, p. 758.

    CAS  Google Scholar 

  36. Niedziałkowski, P., Cebula, Z., Malinowska, N., Białobrzeska, W., Sobaszek, M., Ficek, M., and Ossowski, T., Comparison of the paracetamol electrochemical determination using boron-doped diamond electrode and boron-doped carbon nanowalls, Biosens. Bioelectron., 2019, vol. 126, p. 308.

    Article  Google Scholar 

  37. Amare, M., Voltammetric determination of paracetamol in tablet formulation using Fe(III) doped zeolite-graphite composite modified GCE, Heliyon, 2019, vol. 5, p. e01663.

    Article  Google Scholar 

  38. Arancibia, V., Penagos-Llanos, J., Nagles, E., García-Beltrán, O., and Hurtado, J.J., Development of a microcomposite with single-walled carbon nanotubes and Nd2O3 for determination of paracetamol in pharmaceutical dosage by adsorptive voltammetry, J. Pharm. Anal., 2019, vol. 9, p. 62.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. M. A. Hasan or A. R. Tawfik.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasan, I.M., Tawfik, A.R. & Assaf, F.H. Green Iron Oxide Nanoparticles as a Modifier of Carbon Paste Electrode for Electrochemical Estimation of Paracetamol in Pharmaceutical Samples. Russ J Electrochem 57, 435–447 (2021). https://doi.org/10.1134/S1023193521050050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193521050050

Keywords:

Navigation