Skip to main content
Log in

One-step synthesis of fluorescent smart thermo-responsive copper clusters: A potential nanothermometer in living cells

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Temperature measurement in biology and medical diagnostics, along with sensitive temperature probing in living cells, is of great importance; however, it still faces significant challenges. Metal nanoclusters (NCs) with attractive luminescent properties may be promising candidates to overcome such challenges. Here, a novel one-step synthetic method is presented to prepare highly fluorescent copper NCs (CuNCs) in ambient conditions by using glutathione (GSH) as both the reducing agent and the protective layer preventing the aggregation of the as-formed NCs. The resultant CuNCs, with an average diameter of 2.3 nm, contain 1–3 atoms and exhibit red fluorescence (λem = 610 nm) with high quantum yields (QYs, up to 5.0%). Interestingly, the fluorescence signal of the CuNCs is reversibly responsive to the environmental temperature in the range of 15–80 °C. Furthermore, as the CuNCs exhibit good biocompatibility, they can pervade the MC3T3-E1 cells and enable measurements over the physiological temperature range of 15–45 °C with the use of the confocal fluorescence imaging method. In view of the facile synthesis method and attractive fluorescence properties, the as-prepared CuNCs may be used as photoluminescence thermometers and biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Okabe, K.; Inada, N.; Gota, C.; Harada, Y.; Funatsu, T.; Uchiyama, S. Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy. Nat. Commun. 2012, 3, 705–713.

    Article  Google Scholar 

  2. Jaque, D.; Vetrone, F. Luminescence nanothermometry. Nanoscale 2012, 4, 4301–4326.

    Article  Google Scholar 

  3. McLaurin, E. J.; Bradshaw, L. R.; Gamelin, D. R. Dualemitting nanoscale temperature sensors. Chem. Mater. 2013, 25, 1283–1292.

    Article  Google Scholar 

  4. McCabe, K. M.; Hernandez, M. Molecular thermometry. Pediatr. Res. 2010, 67, 469–475.

    Article  Google Scholar 

  5. Wolfbeis, O. S. Sensor paints. Adv. Mater. 2008, 20, 3759–3763.

    Article  Google Scholar 

  6. Lee, J.; Kotov, N. A. Thermometer design at the nanoscale. Nano Today 2007, 2, 48–51.

    Article  Google Scholar 

  7. Ring, E. F. J. The historical development of temperature measurement in medicine. Infrared Phys. Technol. 2007, 49, 297–301.

    Article  Google Scholar 

  8. Löw, P.; Kim, B.; Takama, N.; Bergaud, C. High-spatial-resolution surface-temperature mapping using fluorescent thermometry. Small 2008, 4, 908–914.

    Article  Google Scholar 

  9. Donner, J. S.; Thompson, S. A.; Kreuzer, M. P.; Baffou, G.; Quidant, R. Mapping intracellular temperature using green fluorescent protein. Nano Lett. 2012, 12, 2107–2111.

    Article  Google Scholar 

  10. Maestro, L. M.; Jacinto, C.; Silva, U. R.; Vetrone, F.; Capobianco, J. A.; Jaque, D.; Solé, J. G. CdTe quantum dots as nanothermometers: Towards highly sensitive thermal imaging. Small 2011, 7, 1774–1778.

    Article  Google Scholar 

  11. Albers, A. E.; Chan, E. M.; McBride, P. M.; Ajo-Franklin, C. M.; Cohen, B. E.; Helms, B. A. Dual-emitting quantum dot/quantum rod-based nanothermometers with enhanced response and sensitivity in live cells. J. Am. Chem. Soc. 2012, 134, 9565–9568.

    Article  Google Scholar 

  12. Peng, H. S.; Stich, M. I. J.; Yu, J. B.; Sun, L. N.; Fischer, L. H.; Wolfbeis, O. S. Luminescent europium(III) nanoparticles for sensing and imaging of temperature in the physiological range. Adv. Mater. 2010, 22, 716–719.

    Article  Google Scholar 

  13. Fischer, L. H.; Harms, G. S.; Wolfbeis, O. S. Upconverting nanoparticles for nanoscale thermometry. Angew. Chem. Int. Ed. 2011, 50, 4546–4551.

    Article  Google Scholar 

  14. Gota, C.; Okabe, K.; Funatsu, T.; Harada, Y.; Uchiyama, S. Hydrophilic fluorescent nanogel thermometer for intracellular thermometry. J. Am. Chem. Soc. 2009, 131, 2766–2767.

    Article  Google Scholar 

  15. Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Bushnell, D. A.; Kornberg, R. D. Structure of a thiol monolayer-protected gold nanoparticle at 1.1 Å resolution. Science 2007, 318, 430–433.

    Article  Google Scholar 

  16. Chen, Y.; Zhou, H. P.; Wang, Y.; Li, W. Y.; Chen, J.; Lin, Q.; Yu, C. Substrate hydrolysis triggered formation of fluorescent gold nanoclusters—a new platform for the sensing of enzyme activity. Chem. Commun. 2013, 49, 9821–9823.

    Article  Google Scholar 

  17. Wang, C. X.; Zhang, D.; Xu, L.; Jiang, Y. N.; Dong, F. X.; Yang, B.; Yu, K.; Lin, Q. A simple reducing approach using amine to give dual functional EuSe nanocrystals and morphological tuning. Angew. Chem. Int. Ed. 2011, 50, 7587–7591.

    Article  Google Scholar 

  18. Dou, X. Y.; Yuan, X.; Yu, Y.; Luo, Z. T.; Yao, Q. F.; Leong, D. T.; Xie, J. Lighting up thiolated Au@Ag nanoclusters via aggregation-induced emission. Nanoscale 2014, 6, 157–161.

    Article  Google Scholar 

  19. Shang, L.; Dong, S. J.; Nienhaus, G. U. Ultra-small fluorescent metal nanoclusters: Synthesis and biological applications. Nano Today 2011, 6, 401–418.

    Article  Google Scholar 

  20. Liu, J. B.; Yu, M. X.; Zhou, C.; Yang, S. Y.; Ning X. H.; Zheng, J. Passive tumor targeting of renal-clearable luminescent gold nanoparticles: Long tumor retention and fast normal tissue clearance. J. Am. Chem. Soc. 2013, 135, 4978–4981.

    Article  Google Scholar 

  21. Yuan, X.; Setyawati, M. I.; Leong, D. T.; Xie, J. P. Ultrasmall Ag+-rich nanoclusters as highly efficient nanoreservoirs for bacterial killing. Nano Res. 2014, 7, 301–307.

    Article  Google Scholar 

  22. Wang, C.; Huang, Y. Facile preparation of fluorescent Agclusters-chitosan-hybrid nanocomposites for bio-applications. New J. Chem. 2014, 38, 657–662.

    Article  Google Scholar 

  23. Wang, C.; Wang, C. X.; Xu, L.; Cheng, H.; Lin, Q.; Zhang, C. Protein-directed synthesis of pH-responsive red fluorescent copper nanoclusters and their applications in cellular imaging and catalysis. Nanocale 2014, 6, 1775–1781.

    Google Scholar 

  24. Jia, X. F.; Yuan, X.; Li, J.; Li, D. Y.; Wang, E. Stable Cu nanoclusters: From an aggregation induced emission mechanism to biosensing and catalytic applications. Chem. Commun. 2014, 50, 237–239.

    Article  Google Scholar 

  25. Cauzzi, D.; Pattacini, R.; Delferro, M.; Dini, F.; Natale, C. D.; Paolesse, R.; Bonacchi, S.; Montalti, M.; Zaccheroni, N.; Calvaresi, M. et al. Temperature-dependent fluorescence of Cu5 metal clusters: A molecular thermometer. Angew. Chem. Int. Ed. 2012, 51, 9662–9665.

    Article  Google Scholar 

  26. Vilar-Vidal, N.; Blanco, M. C.; López-Quintela, M. A.; Rivas, J.; Serra, C. Electrochemical synthesis of very stable photoluminescent copper clusters. J. Phys. Chem. C 2010, 114, 15924–15930.

    Article  Google Scholar 

  27. Yuan, X.; Luo, Z. T.; Zhang, Q. B.; Zhang, X. H.; Zheng, Y. G.; Lee, J. Y.; Xie, J. P. Synthesis of highly fluorescent metal (Ag, Au, Pt, and Cu) nanoclusters by electrostatically induced reversible phase transfer. ACS Nano 2011, 5, 8800–8808.

    Article  Google Scholar 

  28. Choi, M.; Wu, Z.; Iglesia, E. Mercaptosilane-assisted synthesis of metal clusters within zeolites and catalytic consequences of encapsulation. J. Am. Chem. Soc. 2010, 132, 9129–9137.

    Article  Google Scholar 

  29. Zhang H.; Huang, X.; Li, L.; Zhang, G. W.; Hussain, I.; Li, Z.; Tan, B. Photoreductive synthesis of water-soluble fluorescent metal nanoclusters. Chem. Commun. 2011, 48, 567–569.

    Article  Google Scholar 

  30. Zhang, C. L.; Zhou, Z. J.; Qian, Q. R.; Gao, G.; Li, C.; Feng, L. L.; Wang, Q.; Cui, D. X. Glutathione-capped fluorescent gold nanoclusters for dual-modal fluorescence/X-ray computed tomography imaging. J. Mater. Chem. B 2013, 1, 5045–5053.

    Article  Google Scholar 

  31. Wang, C.; Huang, Y. Green route to prepare biocompatible and near infrared thiolate-protected copper nanoclusters for cellular imaging. Nano 2013, 8, 1350054.

    Article  Google Scholar 

  32. Kumar, S.; Bolan, M. D.; Bigioni, T. P. Glutathione-stabilized magic-number silver cluster compounds. J. Am. Chem. Soc. 2010, 132, 13141–13143.

    Article  Google Scholar 

  33. Yuan, X.; Zhang, B.; Luo, Z. T.; Yao, Q. F.; David, T. L.; Yan, N.; Xie, J. P. Balancing the rate of cluster growth and etching for gram-scale synthesis of thiolate-protected Au25 nanoclusters with atomic precision. Angew. Chem. Int. Ed. 2014, 53, 4623–4627.

    Article  Google Scholar 

  34. Luo, Z. T.; Zheng K. Y.; Xie, J. P. Engineering ultrasmall water-soluble gold and silver nanoclusters for biomedical applications. Chem. Comm. 2014, 50, 5143–5155.

    Article  Google Scholar 

  35. Chen, T. T.; Hu, Y. H.; Cen, Y.; Chu, X.; Lu, Y. A dualemission fluorescent nanocomplex of gold-cluster-decorated silica particles for live cell imaging of highly reactive oxygen species. J. Am. Chem. Soc. 2013, 135, 11595–11602.

    Article  Google Scholar 

  36. Alvarez, M. M.; Khoury, J. T.; Schaaff, T. G.; Shafigullin, M.; Vezmar, I.; Whetten, R. L. Critical sizes in the growth of Au clusters. Chem. Phys. Lett. 1997, 266, 91–98.

    Article  Google Scholar 

  37. Luo, Z. T.; Yuan, X.; Yu, Y.; Zhang, Q. B.; Leong, D. T.; Lee, J. Y.; Xie, J. P. From aggregation-induced emission of Au(I)-thiolate complexes to ultrabright Au(0)@Au(I)-thiolate core-shell nanoclusters. J. Am. Chem. Soc. 2012, 134, 16662–16670.

    Article  Google Scholar 

  38. Chen, T. H.; Tseng, W. L. (Lysozyme type VI)-stabilized Au8 clusters: Synthesis mechanism and application for sensing of glutathione in a single drop of blood. Small 2012, 8, 1912–1919.

    Article  Google Scholar 

  39. Shichibu, Y.; Negishi, Y.; Tsunoyama, H.; Kanehara, M.; Teranishi, T.; Tsukuda, T. Extremely high stability of glutathionate-protected Au25 clusters against core etching. Small 2007, 3, 835–839.

    Article  Google Scholar 

  40. Wang, C. X.; Xu, L.; Wang, Y.; Zhang, D.; Shi, X. D.; Dong, F. X.; Yu, K.; Lin, Q.; Yang, B. Fluorescent silver nanoclusters as effective probes for highly selective detection of mercury(II) at parts-per-billion levels. Chem. Asian J. 2012, 7, 1652–1656.

    Article  Google Scholar 

  41. Biswas, S.; Miller, J. T.; Li, Y. H.; Nandakumar, K.; Kumar, C. S. S. R. Developing a millifluidic platform for the synthesis of ultrasmall nanoclusters: Ultrasmall copper nanoclusters as a case study. Small 2012, 8, 688–698.

    Article  Google Scholar 

  42. Zhao, M. Q.; Sun, L.; Crooks, R. M. Preparation of Cu nanoclusters within dendrimer templates. J. Am. Chem. Soc. 1998, 120, 4877–4878.

    Article  Google Scholar 

  43. Brege, J. J.; Hamilton, C. E.; Crouse, C. A.; Barron, A. R. Ultrasmall copper nanoparticles from a hydrophobically immobilized surfactant template. Nano Lett. 2009, 9, 2239–2242.

    Article  Google Scholar 

  44. Goswami, N.; Giri, A.; Bootharaju, M. S.; Xavier, P. L.; Pradeep, T.; Pal, S. K. Copper quantum clusters in protein matrix: Potential sensor of Pb2+ Ion. Anal. Chem. 2011, 83, 9676–9680.

    Article  Google Scholar 

  45. Wei, W. T.; Lu, Y. Z.; Chen, W.; Chen, S. W. One-pot synthesis, photoluminescence, and electrocatalytic properties of subnanometer-sized copper clusters. J. Am. Chem. Soc. 2011,133, 2060–2063.

    Article  Google Scholar 

  46. Luo, Z.; Nachammai, V.; Zhang, B.; Yan, N.; Leong, D. T.; Jiang, D.; Xie, J. Toward understanding the growth mechanism: Tracing all stable intermediate species from reduction of Au(I)-thiolate complexes to evolution of Au25 nanoclusters. J. Am. Chem. Soc. 2014, 136, 10577–10580.

    Article  Google Scholar 

  47. Wang, C. X.; Wang, Y.; Xu, L.; Shi, X. D.; Li, X. W.; Xu, X. W.; Sun, H. C.; Yang, B.; Lin, Q. A galvanic replacement route to prepare strongly fluorescent and highly stable gold nanodots for cellular imaging. Small 2013, 9, 413–420.

    Article  Google Scholar 

  48. Yu, Y.; Luo, Z. T.; Chevrier, D. M.; Leong, D. T.; Zhang, P.; Jiang, D. E.; Xie, J. P. Identification of a highly luminescent Au22(SG)18 nanocluster. J. Am. Chem. Soc. 2014, 136, 1246–1249.

    Article  Google Scholar 

  49. Zheng, K. Y.; Yuan, X.; Goswami, N.; Zhang, Q. B.; Xie, J. P. Recent advances in the synthesis, characterization, and biomedical applications of ultrasmall thiolated silver nanoclusters. RSC Advances 2014, 4, 60581–60596.

    Article  Google Scholar 

  50. Cao, Z. X.; Wang, Y. J.; Zhu, J.; Wu, W.; Zhang, Q. N. Static polarizabilities of copper cluster monocarbonyls CunCO (n = 2–13) and selectivity of CO adsorption on copper clusters. J. Phys. Chem. B 2002, 106, 9649–9654.

    Article  Google Scholar 

  51. Poater, A.; Duran, M.; Jaque, P.; Toro-Labbe, A.; Sola, M. Molecular structure and bonding of copper cluster monocarbonyls CunCO (n = 1–9). J. Phys. Chem. B 2006, 110, 6526–6536.

    Article  Google Scholar 

  52. Jia, X. F.; Li, J.; Wang, E. K. Cu nanoclusters with aggregation induced emission enhancement. Small 2013, 9, 3873–3879.

    Article  Google Scholar 

  53. Xia, F.; Feng, L.; Wang, S. T.; Sun, T. L.; Song, W. L.; Jiang, W. H.; Jiang, L. Dual-responsive surfaces that switch between superhydrophilicity and superhydrophobicity. Adv. Mater. 2006, 18, 432–436.

    Article  Google Scholar 

  54. Shibu, E. S.; Pradeep, T. Quantum clusters in cavities: Trapped Au15 in cyclodextrins. Chem. Mater. 2011, 23, 989–999.

    Article  Google Scholar 

  55. Wang, S. P.; Westcott, S.; Chen, W. Nanoparticle luminescence thermometry. J. Phys. Chem. B 2002, 106, 11203–11209.

    Article  Google Scholar 

  56. Joly, A. G.; Chen, W.; Roark, J.; Zhang, J. Z. Temperature dependence of up-conversion luminescence and photoluminescence of Mn2+ in ZnS:Mn2+ nanoparticles. J. Nanosci. Nanotech. 2001, 1, 295–301.

    Article  Google Scholar 

  57. Liu, X. J.; Zong, C. H.; Lu, L. H. Fluorescent silver nanoclusters for user-friendly detection of Cu2+ on a paper platform. Analyst 2012, 137, 2406–2414.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yagang Yao or Qijun Song.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Ling, L., Yao, Y. et al. One-step synthesis of fluorescent smart thermo-responsive copper clusters: A potential nanothermometer in living cells. Nano Res. 8, 1975–1986 (2015). https://doi.org/10.1007/s12274-015-0707-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0707-0

Keywords

Navigation