Skip to main content
Log in

Carbon dots-based fluorescent probes for sensitive and selective detection of iodide

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on a simple method for the determination of iodide in aqueous solution by exploiting the fluorescence enhancement that is observed if the complex formed between carbon dots and mercury ion is exposed to iodide. Fluorescent carbon dots (C-dots) were treated with Hg(II) ion which causes quenching of the emission of the C-dots. On addition of iodide, the Hg(II) ions are removed from the complex due to the strong interaction between Hg(II) and iodide. This causes the fluorescence to be restored and enables iodide to be determined in the 0.5 to 20 μM concentration range and with a detection limit of ~430 nM. The test is highly selective for iodide (over common other anions) and was used for the determination of iodide in urine.

A“turn-on” fluorescent probe based on carbon dots was obtained and using it to determine the concentration of iodide according to the fluorescent enhancement in aqueous solution

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hoang AH, Mario L (2003) New colorimetric and fluorometric chemosensor based on a cationic polythiophene derivative for iodide-specific detection. J Am Chem Soc 125:4412–4413

    Article  Google Scholar 

  2. Haldimann M, Zimmerli B, Als C, Gerber H (1998) Direct determination of urinary iodine by inductively coupled plasma mass spectrometry using isotope dilution with iodine-129. Clin Chem 44:817–824

    CAS  Google Scholar 

  3. Singh N, Jang DO (2007) Benzimidazole-based tripodal receptor: highly selective fluorescent chemosensor for iodide in aqueous solution. Org Lett 9:1991–1994

    Article  CAS  Google Scholar 

  4. Bichsel Y, Von GU (1999) Determination of iodide and iodate by ion chromatography with postcolumn reaction and UV/Visible detection. Anal Chem 71:34–38

    Article  CAS  Google Scholar 

  5. Zhu YC, Cao L, Hao J, Qu QA, Xin SG (2010) Electrochemical liquid-phase microextraction and determination of iodide in kelp based on a carbon paste electrode by cyclic voltammetry. Microchim Acta 170:121–126

    Article  CAS  Google Scholar 

  6. Ito K, Ichihara T, Zhuo H, Kumamoto K, Timerbaev AR, Hirokawa T (2003) Determination of trace iodide in seawater by capillary electrophoresis following transient isotachophoretic preconcentration comparison with ion chromatography. Anal Chim Acta 497:67–74

    Article  CAS  Google Scholar 

  7. Kamavisdar A, Patel RM (2010) Flow injection spectrophotometric determination of iodide in environmental samples. Microchim Acta 140:119–124

    Google Scholar 

  8. Michael S, Grögel DBM, Stephan S (2011) Luminescent probes for detection and imaging of hydrogen peroxide. Microchim Acta 174:1–18

    Article  Google Scholar 

  9. Kim H, Kang J (2005) Iodide selective fluorescent anion receptor with two methylene bridged bis-imidazolium rings on naphthalene. Tetrahedron Lett 46:5443–5445

    Article  CAS  Google Scholar 

  10. Singh N, Kim MJ, Jang DO (2011) Chromogenic and fluorescent recognition of iodide with a benzimidazole-based tripodal receptor. Org Lett 13:3024–3027

    Article  Google Scholar 

  11. Corma A, Galletero MS, Garcia H, Palomares E, Rey F (2002) Pyrene covalently anchored on a large external surface area zeolite as a selective heterogeneous sensor for iodide. Chem Commun 1100–1101

  12. Li HB, Han CP, Zhang L (2008) Synthesis of cadmium selenide quantum dots modified with thiourea type ligands as fluorescent probes for iodide ions. J Mater Chem 18:4543–4548

    Article  CAS  Google Scholar 

  13. Zhao HX, Liu LQ, Liu ZD, Wang Y, Zhao XJ, Huang CZ (2011) Highly selective detection of phosphate in very complicated matrixes with an off–on fluorescent probe of europium-adjusted carbon dots. Chem Commun 47:2604–2606

    Article  CAS  Google Scholar 

  14. Yu CW, Zhang J, Li JH, Liu P, Wei PH, Chen LX (2011) Fluorescent probe for copper(II) ion based on a rhodaminespirolactame derivative, and its application to fluorescent imaging in living cells. Microchim Acta 174:247–255

    Article  CAS  Google Scholar 

  15. Martinez MR, Sancenon F (2003) Fluorogenic and chromogenic chemosensors and reagents for anions. Chem Rev 103:4419–4476

    Article  Google Scholar 

  16. Lin LR, Fang W, Yu Y, Huang RB, Zheng LS (2007) Selective recognition iodide in aqueous solution based on fluorescence enhancement chemosensor. Spectrochim Acta A Mol Biomol Spectrosc 67:1403–1406

    Article  Google Scholar 

  17. Ma BL, Zeng F, Zheng FY, Wu SZ (2011) A fluorescence turn-on sensor for iodide based on a thymine–HgII–thymine complex. Chem Eur J 17:14844–14850

    Article  CAS  Google Scholar 

  18. Liu L, Xiao L, Zhu HY, Shi XW (2012) Preparation of magnetic and fluorescent bifunctional chitosan nanoparticles for optical determination of copper ion. Microchim Acta 178:413–419

    Article  CAS  Google Scholar 

  19. Wang XH, Peng HS, Chang Z, Hou LL, You FT, Teng F, Song HW, Dong B (2012) Synthesis of ratiometric fluorescent nanoparticles for sensing oxygen. Microchim Acta 178:147–152

    Article  CAS  Google Scholar 

  20. Wang J, Liang JG, Sheng ZH, Han HY (2009) A novel strategy for selective detection of Ag+ based on the red-shift of emission wavelength of quantum dots. Microchim Acta 167:281–287

    Article  CAS  Google Scholar 

  21. Wang XH, Qu KG, Xu BL, Ren JS, Qu XG (2011) Microwave assisted one-step green synthesis of cell-permeable multicolor photoluminescent carbon dots without surface passivation reagents. J Mater Chem 21:2445–2450

    Article  CAS  Google Scholar 

  22. Li HT, He XD, Kang ZH, Huang H, Liu Y, Liu JL, Lian SY, Tsang CHA, Yang XB, Lee ST (2010) Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew Chem Int Ed 49:4430–4434

    Article  CAS  Google Scholar 

  23. Mohd Yazid SNA, Chin SF, Pang SC, Ng SM (2013) Detection of Sn(II) ions via quenching of the fluorescence of carbon nanodots. Microchim Acta 180:137–143

    Article  CAS  Google Scholar 

  24. Zhai XY, Zhang P, Liu CJ, Bai T, Li WC, Dai LM, Liu WG (2012) Highly luminescent carbon nanodots by microwave-assisted pyrolysis. Chem Commun 48:7955–7957

    Article  CAS  Google Scholar 

  25. Jaiswal A, Ghosh SS, Chattopadhyay A (2012) One step synthesis of C-dots by microwave mediated caramelization of poly(ethylene glycol). Chem Commun 48:407–409

    Article  CAS  Google Scholar 

  26. Liu CJ, Zhang P, Zhai XY, Tian F, Li WC, Yang JH, Liu Y, Wang HB, Wang W, Liu WG (2012) Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence. Biomaterials 33:3604–3613

    Article  CAS  Google Scholar 

  27. Peng H, Travas SJ (2009) Simple aqueous solution route to luminescent carbogenic dots from carbohydrates. Chem Mater 21:5563–5565

    Article  CAS  Google Scholar 

  28. Tang L, Ji R, Cao X, Lin J, Jiang H, Li X, Teng KS, Luk CM, Zeng S, Hao J, Lau SP (2012) Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano 6:5102–5110

    Article  CAS  Google Scholar 

  29. Yan XB, Xu T, Chen G, Yang S, Liu H, Xue Q (2004) Preparation and characterization of electrochemically deposited carbon nitride films on silicon substrate. J Phys D Appl Phys 37:907–913

    Article  CAS  Google Scholar 

  30. Chandra S, Pathan SH, Mitra S, Modha BH, Goswami A, Pramanik P (2012) Tuning of photoluminescence on different surface functionalized carbon quantum dots. RSC Advances 2:3602–3606

    Article  CAS  Google Scholar 

  31. Lu XB, Qin XY, Liu S, Chang GH, Zhang YW, Luo YL, Asiri AM, AlYoubi AO, Sun XP (2012) Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of mercury(II) ions. Anal Chem 84:5351–5357

    Article  CAS  Google Scholar 

  32. Qu Q, Zhu AW, Shao XL, Shi GY, Tian Y (2012) Development of a carbon quantum dots-based fluorescent Cu2+ probe suitable for living cell imaging. Chem Commun 48:5473–5475

    Article  CAS  Google Scholar 

  33. Xia YS, Zhu CQ (2008) Use of surface-modified CdTe quantum dots as fluorescent probes in sensing mercury (II). Talanta 75:215–221

    CAS  Google Scholar 

  34. Jagadeeswari S, Jhonsi MA, Kathiravan A, Renganathan R (2011) Photoinduced interaction between MPA capped CdTe QDs and certain anthraquinone dyes. J Lumin 131:597–602

    Article  CAS  Google Scholar 

  35. Hepler LG, Olofsson G (1975) Mercury: thermodynamic properties, chemical equilibria, and standard potentials. Chem Rev 75:585–602

    Article  CAS  Google Scholar 

  36. Zeng HL, Durocher G (1995) Analysis of fluorescence quenching in some antioxidants from non-linear Stern-Volmer plots. J Lumin 63:75–84

    Article  CAS  Google Scholar 

  37. Wei S-C, Hsu P-H, Lee Y-F, Lin Y-W, Huang C-C (2012) Selective detection of iodide and cyanide anions using gold-nanoparticle-based fluorescent probes. ACS Appl Mater Interfaces 4:2652–2658

    Article  CAS  Google Scholar 

  38. Wang M, Wu ZK, Yang J, Wang GZ, Wang HZ, Cai WP (2012) Au25(SG)18 as a fluorescent iodide sensor. Nanoscale 4:4087–4090

    Article  CAS  Google Scholar 

  39. Shang ZB, Wang Y, Jin WJ (2009) Triethanolamine-capped CdSe quantum dots as fluorescent sensors for reciprocal recognition of mercury (II) and iodide in aqueous solution. Talanta 78:364–369

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge financial support from NSFC (Project No. 21025415, 21174040) and the National Key Basic Research Program of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fang Zeng or Shuizhu Wu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 345 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, F., Zeng, F., Ming, Y. et al. Carbon dots-based fluorescent probes for sensitive and selective detection of iodide. Microchim Acta 180, 453–460 (2013). https://doi.org/10.1007/s00604-013-0954-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-013-0954-2

Keywords

Navigation