Skip to main content
Log in

Parallel solid-phase isothermal amplification and detection of multiple DNA targets in microliter-sized wells of a digital versatile disc

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An integrated method for the parallelized detection of multiple DNA target sequences is presented by using microstructures in a digital versatile disc (DVD). Samples and reagents were managed by using both the capillary and centrifugal forces induced by disc rotation. Recombinase polymerase amplification (RPA), in a bridge solid phase format, took place in separate wells, which thereby modified their optical properties. Then the DVD drive reader recorded the modifications of the transmitted laser beam. The strategy allowed tens of genetic determinations to be made simultaneously within <2 h, with small sample volumes (3 μL), low manipulation and at low cost. The method was applied to high-throughput screening of relevant safety threats (allergens, GMOs and pathogenic bacteria) in food samples. Satisfactory results were obtained in terms of sensitivity (48.7 fg of DNA) and reproducibility (below 18 %). This scheme warrants cost-effective multiplex amplification and detection and is perceived to represent a viable tool for screening of nucleic acid targets.

A low-cost method is presented for high-throughput screening of multiple DNA sequences. Parallelized isothermal amplification takes place in microwells integrated into a digital versatile disc. Optical detection is performed by a disc drive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Li Y, Guo SJ, Shao N, Tu S, Xu M, Ren ZR, Ling X, Wang GQ, Lin ZX, Tao SC (2011) A universal multiplex PCR strategy for 100-plex amplification using a hydrophobically patterned microarray. Lab Chip 11:3609–3618

    Article  CAS  Google Scholar 

  2. Ng JK, Chong S (2011) Multiplexing Capabilities of Biosensors for Clinical Diagnostics. INTECH Open Access Publisher, Rijeka

    Google Scholar 

  3. Shrestha HK, Hwu KK, Chang MC (2010) Advances in detection of genetically engineered crops by multiplex polymerase chain reaction methods. Trends Food Sci Tech 21:442–454

    Article  CAS  Google Scholar 

  4. Shao N, Jiang SM, Zhang M, Wang J, Guo SJ, Li Y, Jiang HW, Liu CX, Zhang DB, Yang LT, Tao SC (2014) MACRO: a combined microchip-PCR and microarray system for high-throughput monitoring of genetically modified organisms. Anal Chem 86:1269–1276

    Article  CAS  Google Scholar 

  5. Baker M (2012) Digital PCR hits its stride. Nat Methods 9:541–544

    Article  CAS  Google Scholar 

  6. Hoffmann J, Trotter M, von Stetten F, Zengerle R, Roth G (2012) Solid-phase PCR in a picowell array for immobilizing and arraying 100,000 PCR products to a microscope slide. Lab Chip 12:3049–3054

    Article  CAS  Google Scholar 

  7. Gole J, Gore A, Richards A, Chiu YJ, Fung HL, Bushman D, Chiang HI, Chun J, Lo YH, Zhang K (2013) Massively parallel polymerase cloning and genome sequencing of single cells using nanoliter microwells. Nat Biotechnol 31:1126–1132

    Article  CAS  Google Scholar 

  8. McCalla SE, Tripathi A (2011) Microfluidic reactors for diagnostics applications. Annu Rev. Biomed Eng 13:321–343

    CAS  Google Scholar 

  9. Westin L, Xu X, Miller C, Wang L, Edman CF, Nerenberg M (2000) Anchored multiplex amplification on a microelectronic chip array. Nat Biotechnol 18:199–204

    Article  CAS  Google Scholar 

  10. Khan Z, Poetter K, Park DJ (2008) Enhanced solid phase PCR: mechanisms to increase priming by solid support primers. Anal Biochem 375:391–393

    Article  CAS  Google Scholar 

  11. Khodakov DA, Ellis AV (2014) Recent developments in nucleic acid identification using solid-phase enzymatic assays. Microchim Acta 181:1633–1646

    Article  CAS  Google Scholar 

  12. Shin Y, Perera AP, Kim KW, Park MK (2013) Real-time, label-free isothermal solid-phase amplification/detection (ISAD) device for rapid detection of genetic alteration in cancers. Lab Chip 13:2106–2114

    Article  CAS  Google Scholar 

  13. Kersting S, Rausch V, Bier FF, von Nickisch-Rosenegk M (2014) Rapid detection of Plasmodium falciparum with isothermal recombinase polymerase amplification and lateral flow analysis. Malaria J 13:99–107

    Article  Google Scholar 

  14. del Río JS, Yehia Adly N, Acero-Sánchez JL, Henry OY, O’Sullivan CK (2014) Electrochemical detection of Francisella tularensis genomic DNA using solid-phase recombinase polymerase amplification. Biosens Bioelectron 54: 674–678

  15. Lutz S, Weber P, Focke M, Faltin B, Hoffmann J, Müller C, Mark D, Roth G, Munday P, Armes N, Piepenburg O, Zengerle R, von Stetten F (2010) Microfluidic lab-on-a-foil for nucleic acid analysis based on isothermal recombinase polymerase amplification (RPA). Lab Chip 10:887–893

    Article  CAS  Google Scholar 

  16. Santiago-Felipe S, Tortajada-Genaro LA, Morais S, Puchades R, Maquieira A (2014) One-pot isothermal DNA amplification–Hybridisation and detection by a disc-based method. Sensor Actuat B-Chem 204:273–281

    Article  CAS  Google Scholar 

  17. Tortajada-Genaro LA, Santiago-Felipe S, Amasia M, Russom A, Maquieira A (2015) Isothermal solid-phase recombinase polymerase amplification on microfluidic digital versatile discs (DVDs). RSC Adv 5:29,987–29,995

    Article  CAS  Google Scholar 

  18. Wu J, Zhu Y, Xue F, Mei Z, Yao L, Wang X, Zheng L, Liu J, Liu G, Peng C, Chen W (2014) Recent trends in SELEX technique and its application to food safety monitoring. Microchimica Acta 181:479–491

    Article  CAS  Google Scholar 

  19. Roda A, Mirasoli M, Roda B, Bonvicini F, Colliva C, Reschiglian P (2012) Recent developments in rapid multiplexed bioanalytical methods for foodborne pathogenic bacteria detection. Microchimica Acta 178:7–28

    Article  CAS  Google Scholar 

  20. Xu S (2012) Electromechanical biosensors for pathogen detection. Microchimica Acta 178:245–260

    Article  CAS  Google Scholar 

  21. Santiago-Felipe S, Tortajada-Genaro LA, Puchades R, Maquieira A (2014) Recombinase polymerase and enzyme-linked immunosorbent assay as a DNA amplification-detection strategy for food analysis. Anal Chim Acta 811:81–87

    Article  CAS  Google Scholar 

  22. International Organization for Standardization, Geneva, Switzerland (2005a) ISO 21569:2005. Foodstuffs-methods of analysis for the detection of genetically modified organisms and derived products-Qualitative nucleic acid based methods

  23. International Organization for Standardization, Geneva, Switzerland (2005b) ISO 21570:2005. Foodstuffs-methods of analysis for the detection of genetically modified organisms and derived products-Quantitative nucleic acid based methods

  24. Tortajada-Genaro LA, Rodrigo A, Hevia E, Mena S, Niñoles R, Maquieira A (2015) Microarray on digital versatile disc for identification and genotyping of Salmonella and Campylobacter in meat products. Analytical and bioanalytical chemistry 407:7285–7294

    Article  CAS  Google Scholar 

  25. Adessi C, Matton G, Ayala G, Turcatti G, Mermod JJ, Mayer P, Kawashima E (2006) Solid phase DNA amplification: characterisation of primer attachment and amplification mechanisms. Nucleic Acids Res 28:e87

    Article  Google Scholar 

  26. Shin Y, Kim J, Lee TY (2014) A solid phase-bridge based DNA amplification technique with fluorescence signal enhancement for detection of cancer biomarkers. Sensor Actuat B-Chem 199:220–225

    Article  CAS  Google Scholar 

  27. Li G, Chen Q, Li J, Hu X, Zhao J (2010) A compact disk-like centrifugal microfluidic system for high-throughput nanoliter-scale protein crystallization screening. Anal Chem 82:4362–4369

    Article  CAS  Google Scholar 

  28. Zhou QJ, Wang L, Chen J, Wang RN, Shi YH, Li CH, Zhang DM, Yan XJ, Zhang YJ (2014) Development and evaluation of a real-time fluorogenic loop-mediated isothermal amplification assay integrated on a microfluidic disc chip (on-chip LAMP) for rapid and simultaneous detection of ten pathogenic bacteria in aquatic animals. J Microbiol Meth 104:26–35

    Article  CAS  Google Scholar 

  29. Focke M, Stumpf F, Roth G, Zengerle R, von Stetten F (2010) Centrifugal microfluidic system for primary amplification and secondary real-time PCR. Lab Chip 10:3210–3212

    Article  CAS  Google Scholar 

  30. Gorkin R, Park J, Siegrist J, Amasia M, Lee BS, Park JM, Kim J, Kim H, Madou M, Cho YK (2010) Centrifugal microfluidics for biomedical applications. Lab Chip 10:1758–1773

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research has been funded through projects FEDER PrometeoII/2014/040 (GVA), and CTQ/2013/45875-R (MINECO). The Spanish Ministry of Education and Science provided S.S.F. with a grant for PhD studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ángel Maquieira.

Electronic supplementary material

ESM 1

(DOCX 828 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santiago-Felipe, S., Tortajada-Genaro, L.A., Puchades, R. et al. Parallel solid-phase isothermal amplification and detection of multiple DNA targets in microliter-sized wells of a digital versatile disc. Microchim Acta 183, 1195–1202 (2016). https://doi.org/10.1007/s00604-016-1745-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1745-3

Keywords

Navigation