Skip to main content
Log in

Synthesis of Ag@AgCl nanoboxes, and their application to electrochemical sensing of hydrogen peroxide at very low potential

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Inspired by water-soluble sacrificial template strategies, we have synthesized crystals of silver chloride (AgCl) consisting of a well-defined cubic exterior and a hollow interior. In a next step, silver nanoparticles (Ag-NPs) were attached to the hollow AgCl crystals via a photo-reduction process. The growth mechanism of the resulting Ag@AgCl nanoboxes is discussed, and their morphology and composition characterized by scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction. The electrochemical investigation of the nanoboxes deposited on a glassy carbon electrode revealed its excellent property in terms of electrocatalytic reduction H2O2 at a potential as low as −0.1 V and with fast response (~1 s). The modified GCE responds to of H2O2 in the concentration range from 5.0 μM to 15.0 mM, the sensitivity is 88.8 μA mM−1 cm−2, and the detection limit is 1.7 μM at a signal-to-noise ratio of 3. The sensor also displays excellent selectivity and stability.

We report results of studies relating to hollow Ag@AgCl nanoboxes sythesized by water-soluble sacrificial template strategies and their application to electrochemical sensing of hydrogen peroxide at very low potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. El-Sayed M (2004) Small is different: shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals. Acc Chem Res 37:326–333

    Article  CAS  Google Scholar 

  2. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 7:442–453

    Article  CAS  Google Scholar 

  3. Rycenga M, Cobley CM, Zeng J, Li W, Moran CH, Zhang Q, Qin D, Xia YN (2011) Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem Rev 111:3669–3712

    Article  CAS  Google Scholar 

  4. Somorjai GA, Park JY (2008) Molecular factors of catalytic selectivity. Angew Chem Int Ed 47:9212–9228

    Article  CAS  Google Scholar 

  5. Zaera F (2012) New challenges in heterogeneous catalysis for the 21st century. Catal Lett 142:501–516

    Article  CAS  Google Scholar 

  6. Chen XM, Wu GH, Cai ZX, Oyama M, Chen X (2013) Advances in enzyme-free electrochemical sensors for hydrogen peroxide, glucose, and uric acid. Microchim Acta:1–17

  7. Zhang K, Zhang N, Cai H, Wang C (2012) A novel non-enzyme hydrogen peroxide sensor based on an electrode modified with carbon nanotube-wired CuO nanoflowers. Microchim Acta 176:137–142

    Article  CAS  Google Scholar 

  8. Liu Y, Sun GZ, Jiang CB, Zheng XT, Zheng LX, Li CM (2014) Highly sensitive detection of hydrogen peroxide at a carbonnanotube fiber microelectrode coated with palladiumnanoparticles. Microchim Acta 181:63–70

    Article  CAS  Google Scholar 

  9. Yang L, Hu CG, Wang JL, Yang ZX, Guo YM, Bai ZY, Wang K (2011) Facile synthesis of hollow palladium/copper alloyed nanocubes for formic acid oxidation. Chem Commun 47:8581–8583

    Article  CAS  Google Scholar 

  10. Huang XQ, Zhang HH, Guo CY, Zhou ZY, Zheng NF (2009) Simplifying the creation of hollow metallic nanostructures: one-pot synthesis of hollow palladium/platinum single-crystalline nanocubes. Angew Chem Int Ed 48:4808–4812

    Article  CAS  Google Scholar 

  11. Li CC, Liu YL, Li LM, Du ZF, Xu SJ, Zhang M, Yin XM, Wang TH (2008) A novel amperometric biosensor based on NiO hollow nanospheres for biosensing glucose. Talanta 77:455–459

    Article  CAS  Google Scholar 

  12. Nai JW, Wang SQ, Bai Y, Guo L (2013) Amorphous Ni (OH) 2 Nanoboxes: Fast fabrication and enhanced sensing for glucose. Small 9:3147–3152

    Article  CAS  Google Scholar 

  13. Nie GD, Lu XF, Lei JY, Yang L, Bian XJ, Tong Y, Wang C (2013) Sacrificial template-assisted fabrication of palladium hollow nanocubes and their application in electrochemical detection toward hydrogen peroxide. Electrochim Acta 99:145–151

    Article  CAS  Google Scholar 

  14. Lou XW, Archer LA, Yang ZC (2008) Hollow micro-/nanostructures: synthesis and applications. Adv Mater 20:3987–4019

    Article  CAS  Google Scholar 

  15. Xia YN, Xia XH, Wang Y, Xie SF (2013) Shape controlled synthesis of metal nanocrystals. Mater Res Soc 38:335–344

    Article  CAS  Google Scholar 

  16. Kim SW, Kim M, Lee WY, Hyeon T (2002) Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for Suzuki coupling reactions. J Am Chem Soc 124:7642–7643

    Article  CAS  Google Scholar 

  17. Imhof A (2001) Preparation and characterization of titania-coated polystyrene spheres and hollow titania shells. Langmuir 17:3579–3585

    Article  CAS  Google Scholar 

  18. Ming J, Wu YQ, Nagarajan S, Lee DJ, Sun YK, Zhao FY (2012) Fine control of titania deposition to prepare C@TiO2 composites and TiO2 hollow particles for photo-catalysis and lithium-ion battery applications. J Mater Chem 22:22135–22141

    Article  CAS  Google Scholar 

  19. Liang HP, Lawrence NS, Wan LJ, Jiang L, Song WG, Jones TG (2008) Controllable synthesis of hollow hierarchical palladium nanostructures with enhanced activity for proton/hydrogen sensing. J Phys Chem C 112(2):338–344

    Article  CAS  Google Scholar 

  20. Wang P, Huang BB, Qin XY, Zhang XY, Dai Y, Wei JY, Whangbo MH (2008) Ag@AgCl: A highly efficient and stable photocatalyst active under visible light. Angew Chem Int Ed 47:7931–7933

    Article  CAS  Google Scholar 

  21. Hu C, Peng TW, Hu XX, Nie YL, Zhou XF, Qu JH, He H (2010) Plasmon-induced photodegradation of toxic pollutants with Ag − AgI/Al2O3 under visible-light irradiation. J Am Chem Soc 132:857–862

    Article  CAS  Google Scholar 

  22. Wang Q, Yun YB (2013) Nonenzymatic sensor for hydrogen peroxide based on the electrodeposition of silver nanoparticleson poly (ionic liquid)-stabilized graphene sheets. Microchim Acta 180:261–268

    Article  CAS  Google Scholar 

  23. Chen SH, Yuan R, Chai YQ, Hu FX (2013) Electrochemical sensing of hydrogen peroxide using metalnanoparticles: a review. Microchim Acta 180:15–32

    Article  CAS  Google Scholar 

  24. Tang YX, Jiang ZL, Xing GC, Li AR, Pushkar DK, Zhang YY, Sum TC, Li SZ, Chen XD, Dong ZL, Chen Z (2013) Efficient Ag@AgCl cubic cage photocatalysts profit from ultrafast plasmon-induced electron transfer processes. Adv Funct Mater 23:2932–2940

    Article  CAS  Google Scholar 

  25. Xia YN, Xiong YJ, Lim B, Skrabalak SE (2009) Shape controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 48: 60–103. 25

  26. Sun YG, Mayers B, Herricks T, Xia YN (2003) Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence. Nano Lett 3:955–960

    Article  CAS  Google Scholar 

  27. Chen HH, Zhang Z, Cai DQ, Zhang SY, Zhang BL, Tang JL, Wu ZY (2011) A hydrogenperoxide sensor based on Ag nanoparticles electrodeposited on naturalnano-structure attapulgite modified glassy carbon electrode. Talanta 86:266–270

    Article  CAS  Google Scholar 

  28. Lu WB, Luo YL, Chang GH, Sun XP (2011) Synthesis of functional SiO2-coated graphene oxide nanosheets decorated with Ag nanoparticles for H2O2 and glucose detection. Biosens Bioelectron 26:4791–4797

    Article  CAS  Google Scholar 

  29. Zhao HY, Zheng W, Meng ZX, Zhou HM, Xu XX, Li Z, Zheng YF (2009) Bioelectrochemistry of hemoglobin immobilized on a sodium alginate-multiwall carbon nanotubes composite film. Biosens Bioelectron 24:2352–2357

    Article  CAS  Google Scholar 

  30. Kurowska E, Brzózka A, Jarosz M, Sulka GD, Jaskuła M (2013) Silver nanowire array sensor for sensitive and rapid detection of H2O2. Electrochim Acta 104:439–447

    Article  CAS  Google Scholar 

  31. Zhe Y, Weng WE, Tjiu WFN, Liu TX (2013) Electrodepositing Ag nanodendrites on layered double hydroxides modified glassy carbon electrode: Novel hierarchical structure for hydrogen peroxide detection. Electrochim Acta 90:400–407

    Article  Google Scholar 

  32. Li Y, Fu ZY, Su BL (2012) Hierarchically structured porous materials for energy conversion and storage. Adv Funct Mater 22:4634–4667

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the NSFC (No. 21275116), the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20126101120023), the Natural Science Foundation of Shaanxi Province, China (No. 2012JM2013, 2013JM2006) and the Scientific Research Foundation of Shaanxi Provincial Key Laboratory (2010JS088, 13JS097, 13JS098).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianbin Zheng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 451 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zheng, J., Sheng, Q. et al. Synthesis of Ag@AgCl nanoboxes, and their application to electrochemical sensing of hydrogen peroxide at very low potential. Microchim Acta 182, 61–68 (2015). https://doi.org/10.1007/s00604-014-1272-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-014-1272-z

Keywords

Navigation