Skip to main content
Log in

Monitoring of hydrogen peroxide using a glassy carbon electrode modified with hemoglobin and a polypyrrole-based nanocomposite

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We reported on a highly sensitive electrochemical biosensor that was fabricated by immobilizing hemoglobin (Hb) onto the surface of a glassy carbon electrode (GCE) modified with a nanocomposite made from polypyrrole@poly (styrene-alt-maleic anhydride) grafted with 4-aminobenzenesulfonate. Cyclic voltammograms of the modified GCE at pH 7 exhibited a pair of well-defined redox peaks, thus attesting the direct electron transfer from Hb to the electrode. The biosensor can be used to determine H2O2 and, if operated at a working voltage of −0.4 V, displays a linear response to H2O2 in the 0.8 μM to 460 μM concentration range, and a lower detection limit of 0.32 μM. The surface coverage of active Hb, heterogeneous electron transfer rate constant (ks) and Michaelis-Menten constant (Km) of immobilized Hb are, respectively, 1.52 × 10−9 mol cm−2, 1.3 s−1, and 0.45 mM. Additional features of this biosensor include stability, simplicity, and fast preparation at low-costs. It was successfully applied to the determination of hydrogen peroxide in rainwater samples where it displayed good accuracy and precision.

Schematic steps for fabrication of biosensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mullaugh KM, Kieber RJ, Willey JD, Avery GB (2011) Long-term temporal variability in hydrogen peroxide concentrations in Wilmington, north Carolina USA rainwater. Environ Sci Technol 45:9538

    Article  CAS  Google Scholar 

  2. Xie L, Xu Y, Cao X (2013) Hydrogen peroxide biosensor based on hemoglobin immobilized at graphene, flower-like zinc oxide, and gold nanoparticles nanocomposite modified glassy carbon electrode. Colloids Surf B 107:245

    Article  CAS  Google Scholar 

  3. Li J, Dasgupta PK (2000) Measurement of atmospheric hydrogen peroxide and hydroxymethyl hydroperoxide with a diffusion scrubber and light emitting diode-liquid core waveguide-based fluorometry. Anal Chem 72:5338

    Article  CAS  Google Scholar 

  4. Zhang K, Mao L, Cai R (2000) Stopped-flow spectrophotometric determination of hydrogen peroxide with hemoglobin as catalyst. Talanta 51:179

    Article  CAS  Google Scholar 

  5. Yuan J, Shiller AM (1999) Determination of subnanomolar levels of hydrogen peroxide in seawater by reagent-injection chemiluminescence detection. Anal Chem 71:1975

    Article  CAS  Google Scholar 

  6. Zhang K, Zhang L, Xu J, Wang C, Geng T, Wang H, Zhu J (2010) A sensitive amperometric hydrogen peroxide sensor based on thionin/EDTA/carbon nanotubes—chitosan composite film modified electrode. Microchim Acta 171:139

    Article  Google Scholar 

  7. Ramanavicius A, Kausaite A, Ramanaviciene A (2006) Potentiometric study of quinohemoprotein alcohol dehydrogenase immobilized on the carbon rod electrode. Sens Actuators B: Chem 113:435

    Article  CAS  Google Scholar 

  8. Wang J, Gao H, Sun F, Hao Q, Xu C (2013) Highly sensitive detection of hydrogen peroxide based on nanoporous Fe2O3/CoO composites. Biosens Bioelectron 42:550

    Article  CAS  Google Scholar 

  9. Wang Z, Yi J, Yang S (2013) Direct electrochemistry and electrocatalysis of hemoglobin incorporated in composite film based on diblock weak polyelectrolyte PHAEMA-b-PDMAEMA and multi-walled carbon nanotubes. Sens Actuators B: Chem 176:211

    Article  CAS  Google Scholar 

  10. Yu WH, Li N, Tong DS, Zhou CH, Lin CX, Xu CY (2013) Adsorption of proteins and nucleic acids on clay minerals and their interactions: a review. Appl Clay Sci 80–81:443

    Article  Google Scholar 

  11. Zhu Z, Li X, Zeng Y, Sun W, Zhu W, Huang X (2011) Application of cobalt oxide nanoflower for direct electrochemistry and electrocatalysis of hemoglobin with ionic liquid as enhancer. J Phys Chem C 115:12547

    Article  CAS  Google Scholar 

  12. Wang F, Han R, Liu G, Chen H, Ren T, Yang H, Wen Y (2013) Construction of polydopamine/silver nanoparticles multilayer film for hydrogen peroxide detection. J Electroanal Chem 706:102

    Article  CAS  Google Scholar 

  13. Chen W, Cai S, Ren Q-Q, Wen W, Zhao Y-D (2012) Recent advances in electrochemical sensing for hydrogen peroxide: a review. Analyst 137:49

    Article  CAS  Google Scholar 

  14. Ates M (2013) A review study of (bio)sensor systems based on conducting polymers. Mater Sci Eng C 33:1853

    Article  CAS  Google Scholar 

  15. Ramanavicius A, Ramanaviciene A, Malinauskas A (2006) Electrochemical sensors based on conducting polymer-polypyrrole. Electrochim Acta 51:6025

    Article  CAS  Google Scholar 

  16. Zare EN, Lakouraj MM, Mohseni M (2014) Biodegradable polypyrrole/dextrin conductive nanocomposite: synthesis, characterization, antioxidant and antibacterial activity. Synth Met 187:9

    Article  Google Scholar 

  17. Baghayeri M, Zare EN, Namadchian M (2013) Direct electrochemistry and electrocatalysis of hemoglobin immobilized on biocompatible poly (styrene-alternative-maleic acid)/ functionalized multi-wall carbon nanotubes blends. Sens Actuators B: Chem 188:227

    Article  CAS  Google Scholar 

  18. Zhai H, Xu W, Guo H, Zhou Z, Shen S, Song Q (2004) Preparation and characterization of PE and PE-g-MAH/montmoril-lonite nanocomposites. Eur Polym J 40:2539

    Article  CAS  Google Scholar 

  19. Liu S, Lin B, Yang X, Zhang Q (2007) Carbon-nanotube-enhanced direct electron-transfer reactivity of hemoglobin immobilized on polyurethane elastomer film. J Phys Chem B 111:1182

    Article  CAS  Google Scholar 

  20. Wen Y, Wu H, Chen S, Lu Y, Shen H, Jia N (2009) Direct electrochemistry and electrocatalysis of hemoglobin immobilized in poly (ethylene glycol) grafted multi-walled carbon nanotubes. Electrochim Acta 54:7078

    Article  CAS  Google Scholar 

  21. Jia N, Lian Q, Wang Z, Shen H (2009) A hydrogen peroxide biosensor based on direct electrochemistry of hemoglobin incorporated in PEO–PPO–PEO triblock copolymer film. Sens Actuators: B Chem 137:230

    Article  Google Scholar 

  22. Moghadam PN, Zareh EN (2010) Synthesis of conductive nanocomposites based on polyaniline/poly (styrene-alt-maleic anhydride)/ polystyrene. e-Polymers 54:1

    Google Scholar 

  23. Liang X, Su Y, Yang Y, Qin W (2012) Separation and recovery of lead from a low concentration solution of lead(II) and zinc(II) using the hydrolysis production of poly styrene-co-maleic anhydride. J Hazard Mater 203–204:183

    Article  Google Scholar 

  24. Moghadam PN, Azaryan E, Zeynizade B (2010) Investigation of poly(styrene-alt-maleic anhydride) copolymer for controlled drug delivery of Ceftriaxone antibiotic. J Macromol Sci Pure Appl Chem 47:839

    Article  CAS  Google Scholar 

  25. Baghayeri M, Zare EN, Lakouraj MM (2014) A simple hydrogen peroxide biosensor based on a novel electro-magnetic poly(p-phenylenediamine)@Fe3O4 nanocomposite. Biosens Bioelectron 55:259

    Article  CAS  Google Scholar 

  26. Wang J (1999) Analytical electrochemistry. VCH, New York

    Google Scholar 

  27. Lu X, Hu J, Yao X, Wang Z, Li J (2006) Composite system based on chitosan and room-temperature ionic liquid: direct electrochemistry and electrocatalysis of hemoglobin. Biomacromolecules 7:975

    Article  CAS  Google Scholar 

  28. Saadati S, Salimi A, Hallaj R, Rostami A (2014) Direct electron transfer and electrocatalytic properties of immobilized hemoglobin onto glassy carbon electrode modified with ionic-liquid/titanium-nitride nanoparticles: application to nitrite detection. Sens Actuators: B Chem 191:625

    Article  CAS  Google Scholar 

  29. Sun W, Gao R, Jiao K (2007) Electrochemistry and electrocatalysis of hemoglobin in nafion/nano-CaCO3 film on a new ionic liquid BPPF6 modified carbon paste electrode. J Phys Chem B 111:4560

    Article  CAS  Google Scholar 

  30. Shie J-W, Yogeswaran U, Chen S-M (2009) Hemoglobin immobilized on nafion modified multi-walled carbon nanotubes for O2, H2O2 and CCl3COOH sensors. Talanta 78:896

    Article  CAS  Google Scholar 

  31. Sun W, Cao L, Deng Y, Gong S, Shi F, Li G, Sun Z (2013) Direct electrochemistry with enhanced electrocatalytic activity of hemoglobin in hybrid modified electrodes composed of graphene and multi-walled carbon nanotubes. Anal Chim Acta 781:41

    Article  CAS  Google Scholar 

  32. Bali U, Catalkaya E, Sengül F (2004) Photodegradation of reactive black 5, direct red 28 and direct yellow 12 using UV, UV/H2O2 and UV/H2O2/Fe2+: a comparative study. J Hazard Mater 114:159

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We would like to thank the Hakim Sabzevari University for its financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Baghayeri.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 717 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baghayeri, M., Zare, E.N. & Lakouraj, M.M. Monitoring of hydrogen peroxide using a glassy carbon electrode modified with hemoglobin and a polypyrrole-based nanocomposite. Microchim Acta 182, 771–779 (2015). https://doi.org/10.1007/s00604-014-1387-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-014-1387-2

Keywords

Navigation