Skip to main content

Advertisement

Log in

PCR-based detection of gene transfer vectors: application to gene doping surveillance

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Athletes who illicitly use drugs to enhance their athletic performance are at risk of being banned from sports competitions. Consequently, some athletes may seek new doping methods that they expect to be capable of circumventing detection. With advances in gene transfer vector design and therapeutic gene transfer, and demonstrations of safety and therapeutic benefit in humans, there is an increased probability of the pursuit of gene doping by athletes. In anticipation of the potential for gene doping, assays have been established to directly detect complementary DNA of genes that are top candidates for use in doping, as well as vector control elements. The development of molecular assays that are capable of exposing gene doping in sports can serve as a deterrent and may also identify athletes who have illicitly used gene transfer for performance enhancement. PCR-based methods to detect foreign DNA with high reliability, sensitivity, and specificity include TaqMan real-time PCR, nested PCR, and internal threshold control PCR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Coyle EF (2013) Reconsideration of a Tour de France cyclist. J Appl Physiol. doi:10.1152/japplphysiol.00213.2013

    Google Scholar 

  2. Sottas PE, Robinson N, Fischetto G, Dolle G, Alonso JM, Saugy M (2011) Prevalence of blood doping in samples collected from elite track and field athletes. Clin Chem 57(5):762–769. doi:10.1373/clinchem.2010.156067

    Article  CAS  Google Scholar 

  3. WADA (2013) The 2013 prohibited list. http://www.wada-ama.org/en/World-Anti-Doping-Program/Sports-and-Anti-Doping-Organizations/International-Standards/Prohibited-List/

  4. van der Gronde T, de Hon O, Haisma HJ, Pieters T (2013) Gene doping: an overview and current implications for athletes. Br J Sports Med. doi:10.1136/bjsports-2012-091288

    Google Scholar 

  5. Wells DJ (2008) Gene doping: the hype and the reality. Br J Pharmacol 154(3):623–631. doi:10.1038/bjp.2008.144

    Article  CAS  Google Scholar 

  6. Friedmann T (2010) How close are we to gene doping? Hastings Cent Rep 40(2):20–22

    Article  Google Scholar 

  7. Friedmann T, Rabin O, Frankel MS (2010) Ethics. Gene doping and sport. Science 327(5966):647–648. doi:10.1126/science.1177801

    Article  CAS  Google Scholar 

  8. Wiley (2013) Gene therapy clinical trials worldwide. http://www.wiley.com//legacy/wileychi/genmed/clinical/

  9. Manno CS, Pierce GF, Arruda VR, Glader B, Ragni M, Rasko JJ, Ozelo MC, Hoots K, Blatt P, Konkle B, Dake M, Kaye R, Razavi M, Zajko A, Zehnder J, Rustagi PK, Nakai H, Chew A, Leonard D, Wright JF, Lessard RR, Sommer JM, Tigges M, Sabatino D, Luk A, Jiang H, Mingozzi F, Couto L, Ertl HC, High KA, Kay MA (2006) Successful transduction of liver in hemophilia by AAV-factor IX and limitations imposed by the host immune response. Nat Med 12(3):342–347. doi:10.1038/nm1358

    Article  CAS  Google Scholar 

  10. DiGiusto DL, Krishnan A, Li L, Li H, Li S, Rao A, Mi S, Yam P, Stinson S, Kalos M, Alvarnas J, Lacey SF, Yee JK, Li M, Couture L, Hsu D, Forman SJ, Rossi JJ, Zaia JA (2010) RNA-based gene therapy for HIV with lentiviral vector-modified CD34(+) cells in patients undergoing transplantation for AIDS-related lymphoma. Sci Transl Med 2(36):36ra43. doi:10.1126/scitranslmed.3000931

    Article  Google Scholar 

  11. Kang EM, Choi U, Theobald N, Linton G, Long Priel DA, Kuhns D, Malech HL (2010) Retrovirus gene therapy for X-linked chronic granulomatous disease can achieve stable long-term correction of oxidase activity in peripheral blood neutrophils. Blood 115(4):783–791. doi:10.1182/blood-2009-05-222760

    Article  CAS  Google Scholar 

  12. Niebuhr A, Henry T, Goldman J, Baumgartner I, van Belle E, Gerss J, Hirsch AT, Nikol S (2012) Long-term safety of intramuscular gene transfer of non-viral FGF1 for peripheral artery disease. Gene Ther 19(3):264–270. doi:10.1038/gt.2011.85

    Article  CAS  Google Scholar 

  13. Porter DL, Levine BL, Kalos M, Bagg A, June CH (2011) Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. New Engl J Med 365(8):725–733. doi:10.1056/NEJMoa1103849

    Article  CAS  Google Scholar 

  14. Flotte TR, Conlon TJ, Poirier A, Campbell-Thompson M, Byrne BJ (2007) Preclinical characterization of a recombinant adeno-associated virus type 1-pseudotyped vector demonstrates dose-dependent injection site inflammation and dissemination of vector genomes to distant sites. Hum Gene Ther 18(3):245–256. doi:10.1089/hum.2006.113

    Article  CAS  Google Scholar 

  15. Jiao S, Williams P, Berg RK, Hodgeman BA, Liu L, Repetto G, Wolff JA (1992) Direct gene transfer into nonhuman primate myofibers in vivo. Hum Gene Ther 3(1):21–33. doi:10.1089/hum.1992.3.1-21

    Article  CAS  Google Scholar 

  16. Vigen KK, Hegge JO, Zhang G, Mukherjee R, Braun S, Grist TM, Wolff JA (2007) Magnetic resonance imaging-monitored plasmid DNA delivery in primate limb muscle. Hum Gene Ther 18(3):257–268. doi:10.1089/hum.2006.115

    Article  CAS  Google Scholar 

  17. Wolff JA, Williams P, Acsadi G, Jiao S, Jani A, Chong W (1991) Conditions affecting direct gene transfer into rodent muscle in vivo. Biotechniques 11(4):474–485

    CAS  Google Scholar 

  18. Wu Z, Asokan A, Samulski RJ (2006) Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol Ther 14(3):316–327. doi:10.1016/j.ymthe.2006.05.009

    Article  CAS  Google Scholar 

  19. Toromanoff A, Cherel Y, Guilbaud M, Penaud-Budloo M, Snyder RO, Haskins ME, Deschamps JY, Guigand L, Podevin G, Arruda VR, High KA, Stedman HH, Rolling F, Anegon I, Moullier P, Le Guiner C (2008) Safety and efficacy of regional intravenous (RI) versus intramuscular (IM) delivery of rAAV1 and rAAV8 to nonhuman primate skeletal muscle. Mol Ther 16(7):1291–1299

    Article  CAS  Google Scholar 

  20. Kay MA, Manno CS, Ragni MV, Larson PJ, Couto LB, McClelland A, Glader B, Chew AJ, Tai SJ, Herzog RW, Arruda V, Johnson F, Scallan C, Skarsgard E, Flake AW, High KA (2000) Evidence for gene transfer and expression of factor IX in haemophilia B patients treated with an AAV vector. Nat Genet 24(3):257–261

    Article  CAS  Google Scholar 

  21. Manno CS, Chew AJ, Hutchison S, Larson PJ, Herzog RW, Arruda VR, Tai SJ, Ragni MV, Thompson A, Ozelo M, Couto LB, Leonard DG, Johnson FA, McClelland A, Scallan C, Skarsgard E, Flake AW, Kay MA, High KA, Glader B (2003) AAV-mediated factor IX gene transfer to skeletal muscle in patients with severe hemophilia B. Blood 101(8):2963–2972

    Article  CAS  Google Scholar 

  22. Brantly ML, Spencer LT, Humphries M, Conlon TJ, Spencer CT, Poirier A, Garlington W, Baker D, Song S, Berns KI, Muzyczka N, Snyder RO, Byrne BJ, Flotte TR (2006) Phase I trial of intramuscular injection of a recombinant adeno-associated virus serotype 2 αl-antitrypsin (AAT) vector in AAT-deficient adults. Hum Gene Ther 17(12):1177–1186

    Article  CAS  Google Scholar 

  23. Hengge UR, Dexling B, Mirmohammadsadegh A (2001) Safety and pharmacokinetics of naked plasmid DNA in the skin: studies on dissemination and ectopic expression. J Invest Dermatol 116(6):979–982. doi:10.1046/j.1523-1747.2001.01341.x

    Article  CAS  Google Scholar 

  24. Hagstrom JE, Hegge J, Zhang G, Noble M, Budker V, Lewis DL, Herweijer H, Wolff JA (2004) A facile nonviral method for delivering genes and siRNAs to skeletal muscle of mammalian limbs. Mol Ther 10(2):386–398. doi:10.1016/j.ymthe.2004.05.004

    Article  CAS  Google Scholar 

  25. Su LT, Gopal K, Wang Z, Yin X, Nelson A, Kozyak BW, Burkman JM, Mitchell MA, Low DW, Bridges CR, Stedman HH (2005) Uniform scale-independent gene transfer to striated muscle after transvenular extravasation of vector. Circulation 112(12):1780–1788. doi:10.1161/CIRCULATIONAHA.105.534008

    Article  CAS  Google Scholar 

  26. Wooddell CI, Hegge JO, Zhang G, Sebestyen MG, Noble M, Griffin JB, Pfannes LV, Herweijer H, Hagstrom JE, Braun S, Huss T, Wolff JA (2011) Dose response in rodents and nonhuman primates after hydrodynamic limb vein delivery of naked plasmid DNA. Hum Gene Ther 22(7):889-903. doi:10.1089/hum.2010.160

    Google Scholar 

  27. Gaudet D, Methot J, Dery S, Brisson D, Essiembre C, Tremblay G, Tremblay K, de Wal J, Twisk J, van den Bulk N, Sier-Ferreira V, van Deventer S (2013) Efficacy and long-term safety of alipogene tiparvovec (AAV1-LPLS447X) gene therapy for lipoprotein lipase deficiency: an open-label trial. Gene Ther 20(4):361–369. doi:10.1038/gt.2012.43

    Article  CAS  Google Scholar 

  28. Ciron C, Cressant A, Roux F, Raoul S, Cherel Y, Hantraye P, Deglon N, Schwartz B, Barkats M, Heard JM, Tardieu M, Moullier P, Colle MA (2009) Human alpha-iduronidase gene transfer mediated by adeno-associated virus types 1, 2, and 5 in the brain of nonhuman primates: vector diffusion and biodistribution. Hum Gene Ther 20(4):350–360. doi:10.1089/hum.2008.155

    Article  CAS  Google Scholar 

  29. Doroudchi MM, Greenberg KP, Liu J, Silka KA, Boyden ES, Lockridge JA, Arman AC, Janani R, Boye SE, Boye SL, Gordon GM, Matteo BC, Sampath AP, Hauswirth WW, Horsager A (2011) Virally delivered channelrhodopsin-2 safely and effectively restores visual function in multiple mouse models of blindness. Mol Ther 19(7):1220–1229. doi:10.1038/mt.2011.69

    Article  CAS  Google Scholar 

  30. Gonin P, Gaillard C (2004) Gene transfer vector biodistribution: pivotal safety studies in clinical gene therapy development. Gene Ther 11(Suppl 1):S98–S108

    Article  CAS  Google Scholar 

  31. Verdier F, Descotes J (1999) Preclinical safety evaluation of human gene therapy products. Toxicol Sci 47(1):9–15

    Article  CAS  Google Scholar 

  32. McIntosh J, Lenting PJ, Rosales C, Lee D, Rabbanian S, Raj D, Patel N, Tuddenham EG, Christophe OD, McVey JH, Waddington S, Nienhuis AW, Gray JT, Fagone P, Mingozzi F, Zhou SZ, High KA, Cancio M, Ng CY, Zhou J, Morton CL, Davidoff AM, Nathwani AC (2013) Therapeutic levels of FVIII following a single peripheral vein administration of rAAV vector encoding a novel human factor VIII variant. Blood 121(17):3335–3344. doi:10.1182/blood-2012-10-462200

    Article  CAS  Google Scholar 

  33. Moulay G, Boutin S, Masurier C, Scherman D, Kichler A (2010) Polymers for improving the in vivo transduction efficiency of AAV2 vectors. PLoS One 5(12):e15576. doi:10.1371/journal.pone.0015576

    Article  Google Scholar 

  34. Wang L, Wang H, Bell P, McCarter RJ, He J, Calcedo R, Vandenberghe LH, Morizono H, Batshaw ML, Wilson JM (2010) Systematic evaluation of AAV vectors for liver directed gene transfer in murine models. Mol Ther 18(1):118–125. doi:10.1038/mt.2009.246

    Article  CAS  Google Scholar 

  35. Beiter T, Zimmermann M, Fragasso A, Armeanu S, Lauer UM, Bitzer M, Su H, Young WL, Niess AM, Simon P (2008) Establishing a novel single-copy primer-internal intron-spanning PCR (spiPCR) procedure for the direct detection of gene doping. Exerc Immunol Rev 14:73–85

    Google Scholar 

  36. Beiter T, Zimmermann M, Fragasso A, Hudemann J, Niess AM, Bitzer M, Lauer UM, Simon P (2011) Direct and long-term detection of gene doping in conventional blood samples. Gene Ther 18(3):225–231. doi:10.1038/gt.2010.122

    Article  CAS  Google Scholar 

  37. Moser DA, Neuberger EW, Simon P (2012) A quick one-tube nested PCR-protocol for EPO transgene detection. Drug Test Anal 4(11):870–875. doi:10.1002/dta.1348

    Article  CAS  Google Scholar 

  38. Baoutina A, Coldham T, Bains GS, Emslie KR (2010) Gene doping detection: evaluation of approach for direct detection of gene transfer using erythropoietin as a model system. Gene Ther 17(8):1022–1032. doi:10.1038/gt.2010.49

    Article  CAS  Google Scholar 

  39. Ni W, Le Guiner C, Gernoux G, Penaud-Budloo M, Moullier P, Snyder RO (2011) Longevity of rAAV vector and plasmid DNA in blood after intramuscular injection in nonhuman primates: implications for gene doping. Gene Ther 18(7):709–718. doi:10.1038/gt.2011.19

    Article  CAS  Google Scholar 

  40. Ni W, Le Guiner C, Moullier P, Snyder RO (2012) Development and utility of an internal threshold control (ITC) real-time PCR assay for exogenous DNA detection. PLoS One 7(5):e36461. doi:10.1371/journal.pone.0036461

    Article  CAS  Google Scholar 

  41. Schumacher YO, Klodt F, Nonis D, Pottgiesser T, Alsayrafi M, Bourdon PC, Voss SC (2012) The impact of long-haul air travel on variables of the athlete's biological passport. Int J Lab Hematol. doi:10.1111/j.1751-553X.2012.01450.x

    Google Scholar 

  42. Mitchell-Felton H, Kandarian SC (1999) Normalization of muscle plasmid uptake by Southern blot: application to SERCA1 promoter analysis. Am J Physiol 277(6 Pt 1):C1269–C1276

    CAS  Google Scholar 

  43. Sarkis C, Philippe S, Mallet J, Serguera C (2008) Non-integrating lentiviral vectors. Curr Gene Ther 8(6):430–437

    Article  CAS  Google Scholar 

  44. Penaud-Budloo M, Le Guiner C, Nowrouzi A, Toromanoff A, Cherel Y, Chenuaud P, Schmidt M, von Kalle C, Rolling F, Moullier P, Snyder RO (2008) Adeno-associated virus vector genomes persist as episomal chromatin in primate muscle. J Virol 82(16):7875–7885. doi:10.1128/JVI.00649-08

    Article  CAS  Google Scholar 

  45. Sun X, Lu Y, Bish LT, Calcedo R, Wilson JM, Gao G (2010) Molecular analysis of vector genome structures after liver transduction by conventional and self-complementary adeno-associated viral serotype vectors in murine and nonhuman primate models. Hum Gene Ther 21(6):750–761. doi:10.1089/hum.2009.214

    Article  CAS  Google Scholar 

  46. Schnepp BC, Clark KR, Klemanski DL, Pacak CA, Johnson PR (2003) Genetic fate of recombinant adeno-associated virus vector genomes in muscle. J Virol 77(6):3495–3504

    Article  CAS  Google Scholar 

  47. Moskalenko M, Chen L, van Roey M, Donahue BA, Snyder RO, McArthur JG, Patel SD (2000) Epitope mapping of human anti-adeno-associated virus type 2 neutralizing antibodies: implications for gene therapy and virus structure. J Virol 74(4):1761–1766

    Article  CAS  Google Scholar 

  48. Chirmule N, Propert K, Magosin S, Qian Y, Qian R, Wilson J (1999) Immune responses to adenovirus and adeno-associated virus in humans. Gene Ther 6(9):1574–1583

    Article  CAS  Google Scholar 

  49. Nowrouzi A, Penaud-Budloo M, Kaeppel C, Appelt U, Le Guiner C, Moullier P, von Kalle C, Snyder RO, Schmidt M (2012) Integration frequency and intermolecular recombination of rAAV vectors in non-human primate skeletal muscle and liver. Mol Ther 20(6):1177–1186. doi:10.1038/mt.2012.47

    Article  CAS  Google Scholar 

  50. Ginzinger DG (2002) Gene quantification using real-time quantitative PCR: an emerging technology hits the mainstream. Exp Hematol 30(6):503–512

    Article  CAS  Google Scholar 

  51. Sommer JJ, Smith PH, Parthasarathy S, Isaacs J, Vijay S, Kieran J, Powell SK, McClelland A, Wright JF (2003) Quantification of adeno-associated virus particles and empty capsids by optical density measurement. Mol Ther 7(1):122–128

    Article  CAS  Google Scholar 

  52. Baoutina A, Alexander IE, Rasko JE, Emslie KR (2007) Potential use of gene transfer in athletic performance enhancement. Mol Ther 15(10):1751–1766. doi:10.1038/sj.mt.6300278

    Article  CAS  Google Scholar 

  53. Al-Soud WA, Jonsson LJ, Radstrom P (2000) Identification and characterization of immunoglobulin G in blood as a major inhibitor of diagnostic PCR. J Clin Microbiol 38(1):345–350

    CAS  Google Scholar 

  54. Al-Soud WA, Radstrom P (2001) Purification and characterization of PCR-inhibitory components in blood cells. J Clin Microbiol 39(2):485–493. doi:10.1128/JCM.39.2.485-493.2001

    Article  CAS  Google Scholar 

  55. Scarano S, Ermini ML, Spiriti MM, Mascini M, Bogani P, Minunni M (2011) Simultaneous detection of transgenic DNA by surface plasmon resonance imaging with potential application to gene doping detection. Anal Chem 83(16):6245–6253. doi:10.1021/ac200877m

    Article  CAS  Google Scholar 

  56. Hoshino T, Inagaki F (2012) Molecular quantification of environmental DNA using microfluidics and digital PCR. Syst Appl Microbiol 35(6):390–395. doi:10.1016/j.syapm.2012.06.006

    Article  CAS  Google Scholar 

  57. Huggett JF, Foy CA, Benes V, Emslie K, Garson JA, Haynes R, Hellemans J, Kubista M, Mueller RD, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT, Bustin SA (2013) The digital MIQE guidelines: minimum information for publication of quantitative digital PCR experiments. Clin Chem 59(6):892–902. doi:10.1373/clinchem.2013.206375

    Article  CAS  Google Scholar 

  58. Sanders R, Huggett JF, Bushell CA, Cowen S, Scott DJ, Foy CA (2011) Evaluation of digital PCR for absolute DNA quantification. Anal Chem 83(17):6474–6484. doi:10.1021/ac103230c

    Article  CAS  Google Scholar 

  59. Whale AS, Huggett JF, Cowen S, Speirs V, Shaw J, Ellison S, Foy CA, Scott DJ (2012) Comparison of microfluidic digital PCR and conventional quantitative PCR for measuring copy number variation. Nucleic Acids Res 40(11):e82. doi:10.1093/nar/gks203

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was funded by the World Anti-Doping Agency (WADA; R.O.S. and P.M.), United States Anti-Doping Agency (R.O.S.), Partnership for Clean Competition (R.O.S.), and Agence Francaise de Lutte contre le Dopage (P.M.). This work was performed under a Cooperative Agreement between INSERM, AFM, L'Etablissement Francais du Sang, and the University of Florida Center of Excellence for Regenerative Health Biotechnology.

Conflict of interest

R.O.S. is an inventor on patents related to rAAV technology. R.O.S owns equity in a gene therapy company that is commercializing adeno-associated virus for gene therapy applications. To the extent that the work reported in this article increases the value of these commercial holdings, R.O.S. has a conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard O. Snyder.

Additional information

Published in the topical collection Anti-doping Analysis with guest editor Christopher Harrison.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perez, I.C., Le Guiner, C., Ni, W. et al. PCR-based detection of gene transfer vectors: application to gene doping surveillance. Anal Bioanal Chem 405, 9641–9653 (2013). https://doi.org/10.1007/s00216-013-7264-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7264-8

Keywords

Navigation