Skip to main content
Log in

Glassy carbon electrode modified with a film composed of Ni(II), quercetin and graphene for enzyme-less sensing of glucose

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We present a modified glassy carbon electrode as a sensing platform for glucose. It is based on a composite film prepared from Ni(II) ion, quercetin and graphene. The sensor was characterized by cyclic voltammetry. The electron transfer coefficient, reaction rate constant and catalytic rate constant were determined and found to be 0.53, 5.4 s−1 and 2.93 × 103 M−1 s−1, respectively. The catalytic current depends linearly on the concentration of glucose in the range from 3 to 900 μM, with a detection limit of 0.5 μM (at an S/R of 3). The sensor exhibits good reproducibility, stability, fast response, and high sensitivity.

Cyclic voltammograms of Ni(II)-Qu/Gr/GCE in 0.1 M NaOH solution at various scan rates (from inner to outer): 0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 V·s−1. Plot of I p versus υ1/2 and E p versus logυ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ai K, Zhang BH, Lu LH (2009) Europium-based fluorescence nanoparticle sensor for rapid and ultrasensitive detection of an anthrax biomarker. Angew Chem Int Ed Engl 48:304

    Article  CAS  Google Scholar 

  2. Porterfield DM (2007) Measuring metabolism and biophysical flux in the tissue, cellular and sub-cellular domains: recent developments in self-referencing amperometry for physiological sensing. Biosens Bioelectron 22:1186

    Article  CAS  Google Scholar 

  3. Terry LA, White SF, Tigwell LJ (2005) The application of biosensors to fresh produce and the wider food industry. J Agric Food Chem 53:1309

    Article  CAS  Google Scholar 

  4. Heller A, Feldman B (2008) Electrochemical glucose sensors and their applications in diabetes management. Chem Rev 108:2482

    Article  CAS  Google Scholar 

  5. Clark LC, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann NY Acad Sci 102:29

    Article  CAS  Google Scholar 

  6. Shan CS, Yang HF, Song JF, Han DX, Ivaska A, Niu L (2009) Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal Chem 81:2378

    Article  CAS  Google Scholar 

  7. Meng L, Jin J, Yang GX, Lu TH, Zhang H, Cai CX (2009) Nonenzymatic electrochemical detection of glucose based on palladium − single-walled carbon nanotube hybrid nanostructures. Anal Chem 81:7271

    Article  CAS  Google Scholar 

  8. Cui HF, Ye JS, Zhang WD, Li CM, Luong HT, Sheu FS (2007) Selective and sensitive electrochemical detection of glucose in neutral solution using platinum-lead alloy nanoparticle/carbon nanotube nanocomposites. Anal Chim Acta 594:175

    Article  CAS  Google Scholar 

  9. Li LH, Zhang WD (2008) Preparation of carbon nanotubes supported platinum nanoparticles by an organic colloidal process for nonenzymatic glucose sensing. Microchim Acta 163:305

    Article  CAS  Google Scholar 

  10. Satheesh Babu TG, Ramachandran T, Nair B (2010) Single step modification of copper electrode for the highly sensitive and selective non-enzymatic determination of glucose. Microchim Acta 169:49

    Article  Google Scholar 

  11. Ben Aoun S, Dursun Z, Koga T, Bang GS, Sotomura T, Taniguchi I (2004) Effect of metal ad-layers on Au(1 1 1) electrodes on electrocatalytic oxidation of glucose in an alkaline solution. J Electroanal Chem 567:175

    Article  CAS  Google Scholar 

  12. Watson DJ, Attard GA (2001) The electro-oxidation of glucose using platinum–palladium bulk alloy single crystals. Electrochim Acta 46:3157

    Article  CAS  Google Scholar 

  13. Bamba K, Léger J-M, Garnier E, Bachmann C, Servat K, Kokoh KB (2005) Selective electro-oxidation of D-glucose by RuCl2(azpy)2 complexes as electrochemical mediators. Electrochim Acta 50:3341

    Article  CAS  Google Scholar 

  14. Yan W, Feng XM, Chen XJ, Hou WH, Zhu JJ (2008) A super highly sensitive glucose biosensor based on Au nanoparticles–AgCl@polyaniline hybrid material. Biosens Bioelectron 23:925

    Article  CAS  Google Scholar 

  15. Wang J, Taha Z (1990) Catalytic oxidation and flow detection of carbohydrates at ruthenium dioxide modified electrodes. Anal Chem 62:1413

    Article  CAS  Google Scholar 

  16. Ojani R, Raoof JB, Salmany-Afagh P (2004) Electrocatalytic oxidation of some carbohydrates by poly(1-naphthylamine)/nickel modified carbon paste electrode. J Electroanal Chem 571:1

    Article  CAS  Google Scholar 

  17. Yousef Elahi M, Heli H, Bathaie SZ, Mousavi MF (2007) Electrocatalytic oxidation of glucose at a Ni-curcumin modified glassy carbon electrode. J Solid State Electrochem 11:273

    Article  CAS  Google Scholar 

  18. Quintino MSM, Winnischofer H, Nakamura M, Araki K, Toma HE, Angnes L (2005) Amperometric sensor for glucose based on electrochemically polymerized tetraruthenated nickel-porphyrin. Anal Chim Acta 539:215

    Article  CAS  Google Scholar 

  19. Pietta PG (2000) Flavonoids as antioxidants. J Nat Prod 63(7):1035

    Article  CAS  Google Scholar 

  20. Zheng L, Song JF (2010) Electrocatalytic oxidation of methanol and other short chain aliphatic alcohols at Ni(II)–quercetin complex modified multi-wall carbon nanotube paste electrode. J Solid State Electrochem 14:43

    Article  CAS  Google Scholar 

  21. Fei JJ, Li JN, Yi FY (2001) Determination of copper in human serum by adsorptive stripping voltammetry at quercetin modified carbon paste electrode. Chin J Anal Chem 29(8):916

    CAS  Google Scholar 

  22. Huang KJ, Niu DJ, Sun JY, Han CH, Wu ZW, Ll YL, Xiong XQ (2011) Novel electrochemical sensor based on functionalized graphene for simultaneous determination of adenine and guanine in DNA. Colloids Surf B 82:543

    Article  CAS  Google Scholar 

  23. Stampfer C, Schurtenberger E, Molitor F, Güttinger J, Ihn T, Ensslin K (2008) Tunable graphene single electron transistor. Nano Lett 8:2378

    Article  CAS  Google Scholar 

  24. Li D, Kaner RB (2008) Graphene-based materials. Science 320:1170

    Article  CAS  Google Scholar 

  25. Peres NMR, Guinea F, Castro Neto AH (2006) Electronic properties of disordered two-dimensional carbon. Phys Rev B 73:125411

    Article  Google Scholar 

  26. Westervelt RM (2008) Graphene Nanoelectronics. Science 320:324

    Article  CAS  Google Scholar 

  27. Cassagneau T, Fendler JH (1998) High density rechargable lithium-ion batteries self-assembled from graphite oxide nanoplatelets and polyelectrolytes. Adv Mater 10:877

    Article  CAS  Google Scholar 

  28. Gilje S, Han S, Wang M, Wang KL, Kaner RB (2007) A chemical route to graphene for device applications. Nano Lett 7:3394

    Article  CAS  Google Scholar 

  29. Bunch JS, van der Zande AM, Verbridge SS, Frank IW, Tanenbaum DM, Parpia JM, Craighead HG, McEuen PL (2007) Electromechanical resonators from graphene sheets. Science 315:490

    Article  CAS  Google Scholar 

  30. Fu CL, Yang WS, Chen X, Evans DG (2009) Direct electrochemistry of glucose oxidase on a graphite nanosheet–Nafion composite film modified electrode. Electrochem Commun 11:997

    Article  CAS  Google Scholar 

  31. Li J, Guo S, Zhai Y, Wang E (2009) High-sensitivity determination of lead and cadmium based on the Nafion-graphene composite film. Anal Chim Acta 649:196

    Article  CAS  Google Scholar 

  32. Li J, Guo S, Zhai Y, Wang E (2009) Nafion–graphene nanocomposite film as enhanced sensing platform for ultrasensitive determination of cadmium. Electrochem Commun 11:1085

    Article  CAS  Google Scholar 

  33. Kang X, Wang J, Wu H, Aksay IA, Liu J, Lin Y (2009) Glucose Oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing. Biosens Bioelectron 25:901

    Article  CAS  Google Scholar 

  34. Yang S, Guo D, Su L, Yu P, Li D, Ye J, Mao L (2009) A facile method for preparation of graphene film electrodes with tailor-made dimensions with Vaseline as the insulating binder. Electrochem Commun 11:1912

    Article  CAS  Google Scholar 

  35. Zheng L, Zhang JQ, Song JF (2009) Ni(II)–quercetin complex modified multiwall carbon nanotube ionic liquid paste electrode and its electrocatalytic activity toward the oxidation of glucose. Electrochim Acta 54:4559

    Article  CAS  Google Scholar 

  36. Xu GR, Kim S (2006) Selective determination of quercetin using carbon nanotube-modified electrodes. Electroanalysis 18:1786

    Article  CAS  Google Scholar 

  37. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101(1):19

    Article  CAS  Google Scholar 

  38. Bard AJ, Faulkner LR (2001) Electrochemical methods, 2nd edn. Wiley, New York, p 211

    Google Scholar 

  39. Zhang L, Ni YH, Li H (2010) Addition of porous cuprous oxide to a Nafion film strongly improves the performance of a nonenzymatic glucose sensor. Microchim Acta 171:103

    Article  CAS  Google Scholar 

  40. Wu H, Wang J, Kang XH, Wang CM, Wang DH, Liu J, IlA A, Lin YH (2009) Glucose biosensor based on immobilization of glucose oxidase in platinum nanoparticles/graphene/chitosan nanocomposite film. Talanta 80(1):403

    Article  CAS  Google Scholar 

  41. Su C, Zhang C, Lu GQ, Ma CA (2010) Nonenzymatic electrochemical glucose sensor based on Pt nanoparticles/mesoporous carbon matrix. Electroanalysis 22(16):1901

    Article  CAS  Google Scholar 

  42. Ndamanisha JC, Guo LP (2009) Nonenzymatic glucose detection at ordered mesoporous carbon modified electrode. Bioelectrochemistry 77(1):60

    Article  CAS  Google Scholar 

  43. Senel M, Abaslyanlk MF (2010) Construction of a novel glucose biosensor based on covalent immobilization of glucose oxidase on poly(glycidyl methacrylate-co-vinylferrocene). Electroanalysis 22(15):1765

    Article  CAS  Google Scholar 

  44. Wang G, Wei Y, Zhang W, Zhang X, Fang B, Wang L (2010) Enzyme-free amperometric sensing of glucose using Cu-CuO nanowire composites. Microchim Acta 168:87

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (20805040), Program for Science &Technology Innovation Talents in Universities of Henan Province (2010HASTIT025), and Excellent Youth Foundation of He’nan Scientific Committee (104100510020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke-Jing Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, JY., Huang, KJ., Fan, Y. et al. Glassy carbon electrode modified with a film composed of Ni(II), quercetin and graphene for enzyme-less sensing of glucose. Microchim Acta 174, 289–294 (2011). https://doi.org/10.1007/s00604-011-0625-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-011-0625-0

Keywords

Navigation