Skip to main content
Log in

Amperometric nonenzymatic glucose sensor based on a glassy carbon electrode modified with a nanocomposite made from nickel(II) hydroxide nanoplates and carbon nanofibers

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on a highly sensitive and selective nonenzymatic glucose sensor based on a glassy carbon electrode modified with a composite prepared from nickel(II) hydroxide nanoplates and carbon nanofibers. The nanocomposite was characterized by scanning electron microscopy and powder X-ray diffraction. Electrodes modified with pure Ni(OH)2 and with the nanocomposite were characterized by electrochemical impedance spectroscopy. Cyclic voltammetric and amperometric methods were used to investigate the catalytic properties of the modified electrodes for glucose electrooxidation in strongly alkaline solution. The sensor exhibits a wide linear range (from 0.001 to 1.2 mM), a low detection limit (0.76 μM), fast response time (< 5 s), high sensitivity (1038.6 μA · mM−1 · cm−2), good reproducibility, and long operational stability. Application of the nonenzymatic sensor for monitoring glucose in real samples was also demonstrated.

We report on a highly sensitive and selective nonenzymatic glucose sensor based on a glassy carbon electrode modified with a nanocomposite prepared from nickel (II) hydroxide nanoplates and carbon nanofibers. The facile preparation, high electrocatalytic activity, relatively fast response, favorable reproducibility and long-term performance stability demonstrate the potential applications of the sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Serp P, Corrias M, Kalck P (2003) Carbon nanotubes and nanofibers in catalysis. Appl Catal A 253:337

    Article  CAS  Google Scholar 

  2. Melechko AV, Merkulov VI, McKnight TE, Guillorn MA, Klein KL, Lowndes DH, Simpson ML (2005) Vertically aligned carbon nanofibers and related structures: Controlled synthesis and directed assembly. J Appl Phys 97:041301

    Article  Google Scholar 

  3. Banks CE, Compton RG (2005) Exploring the electrocatalytic sites of carbon nanotubes for NADH detection: an edge plane pyrolytic graphite electrode study. Analyst 130:1232

    Article  CAS  Google Scholar 

  4. Vamvakaki V, Tsagaraki K, Chaniotakis N (2006) Carbon nanofiber-based glucose biosensor. Anal Chem 78:5538

    Article  CAS  Google Scholar 

  5. Wu L, Zhang XJ, Ju HX (2007) Detection of NADH and ethanol based on catalytic activity of soluble carbon nanofiber with low overpotential. Anal Chem 79:453

    Article  CAS  Google Scholar 

  6. Hao C, Ding L, Zhang XJ, Ju HX (2007) Biocompatible conductive architecture of carbon nanofiber-doped chitosan prepared with controllable electrodeposition for cytosensing. Anal Chem 79:4442

    Article  CAS  Google Scholar 

  7. Wu L, Zhang XJ, Ju HX (2007) Highly sensitive flow injection detection of hydrogen peroxide with high throughput using a carbon nanofiber-modified electrode. Analyst 132:406

    Article  CAS  Google Scholar 

  8. Liu Y, Hou HQ, You TY (2008) Synthesis of carbon nanofibers for mediatorless sensitive detection of NADH. Electroanalysis 20:1708

    Article  Google Scholar 

  9. Liu Y, Teng H, Hou HQ, You TY (2009) Nonenzymatic glucose sensor based on renewable electrospun Ni nanoparticles-loaded carbon nanofiber paste electrode. Biosens Bioelectron 24:3329

    Article  CAS  Google Scholar 

  10. Zhang L, Cheng B, Samulski ET (2004) In situ fabrication of dispersed, crystalline platinum nanoparticles embedded in carbon nanofibers. Chem Phys Lett 398:505

    Article  CAS  Google Scholar 

  11. Bezemer GL, Falke U, Van Dillen AJ, De Jong KP (2005) Cobalt on carbon nanofiber catalysts: auspicious system for study fo manganese promotion in Fischer-Tropsch catalysis. Chem Commun 6:731

    Article  Google Scholar 

  12. Huang JS, Wang DW, Hou HQ, You TY (2008) Electrospun palladium nanoparticles-loaded carbon Nanofibers and their electrocatalytic activities towards hydrogen peroxide and NADH. Adv Funct Mater 18:441

    Article  CAS  Google Scholar 

  13. Vamvakaki V, Hatzimarinaki M, Chaniotakis N (2008) Biomimetically synthesized silica-carbon nanofiber architectures for the development of highly stable electrochemical biosensor systems. Anal Chem 80:5970

    Article  CAS  Google Scholar 

  14. Niu X, Lan M, Zhao H, Chen C (2013) Highly sensitive and selective nonenzymatic detection of glucose using three-dimensional porous nickel nanostructures. Anal Chem 85:3561

    Article  CAS  Google Scholar 

  15. Sanghavi BJ, Sitaula S, Griep MH, Karna SP, Ali MF, Swami NS (2013) Real-Time Electrochemical Monitoring of Adenosine Triphosphate in the Picomolar to Micromolar Range Using Graphene-Modified Electrodes. Anal Chem 85:8158

    Article  CAS  Google Scholar 

  16. Sanghavi BJ, Srivastava AK (2013) Adsorptive stripping voltammetric determination of imipramine, trimipramine and desipramine employing titanium dioxide nanoparticles and an Amberlite XAD-2 modified glassy carbon paste electrode. Analyst 138:1395

    Article  CAS  Google Scholar 

  17. Sanghavi BJ, Srivastava AK (2010) Simultaneous voltammetric determination of acetaminophen, aspirin and caffeine using an in situ surfactant-modified multiwalled carbon nanotube paste electrode. Electrochim Acta 55:8638

    Article  CAS  Google Scholar 

  18. Sanghavi BJ, Srivastava AK (2011) Simultaneous voltammetric determination of acetaminophen and tramadol using Dowex50wx2 and gold nanoparticles modified glassy carbon paste electrode. Analytica Chimica Acta 706:246

    Article  CAS  Google Scholar 

  19. Wang G, He X, Wang L, Gu A, Huang Y, Fang B, Geng B, Zhang X (2013) Non-enzymatic electrochemical sensing of glucose. Microchim Acta 180:161

    Article  CAS  Google Scholar 

  20. Xie FY, Huang Z, Chen C, Xie QJ, Huang Y, Qin C, Liu Y, Su ZH, Yao SZ (2012) Preparation of Au-film electrodes in glucose-containing Au-electroplating aqueous bath for high-performance nonenzymatic glucose sensor and glucose/O2 fuel cell. Electrochem Commun 18:108

    Article  CAS  Google Scholar 

  21. Yuan JH, Wang K, Xia XH (2005) Highly ordered platinum nanotubule arrays for amperometric glucose sensing. Adv Funct Mater 15:803

    Article  CAS  Google Scholar 

  22. Wang J, Thomas DF, Chen A (2008) Nonenzymatic electrochemical glucose sensor based on nanoporous PtPb networks. Anal Chem 80:997

    Article  CAS  Google Scholar 

  23. Li LH, Zhang WD, Ye JS (2008) Electrocatalytic oxidation glucose at carbon nanotubes supported PtRu nanoparticles and its detection. Electroanalysis 20:2212

    Article  CAS  Google Scholar 

  24. Zhang L, Ni Y, Li H (2010) Addition of porous cuprous oxide to a Nafion film strongly improves the performance of a nonenzymatic glucose sensor. Microchim Acta 171:103

    Article  CAS  Google Scholar 

  25. Weng S, Zheng Y, Zhao C, Zhou J, Lin L, Zheng Z, Lin X (2013) CuO nanoleaf electrode: facile preparation and nonenzymatic sensor applications. Microchim Acta 180:371

    Article  CAS  Google Scholar 

  26. Zhu X, Jiao Q, Zhang C, Zuo X, Xiao X, Liang Y, Nan J (2013) Amperometric nonenzymatic determination of glucose based on a glassy carbon electrode modified with nickel(II) oxides and graphene. Microchim Acta 180:477

    Article  CAS  Google Scholar 

  27. Chen Q, Wang J, Rayson G, Tian B, Lin Y (1993) Sensor array for carbohydrates and amino acids based on electrocatalytic modified electrodes. Anal Chem 65:251

    Article  CAS  Google Scholar 

  28. Ojani R, Raoof JB, Fathi S (2008) Electrocatalytic oxidation of some carbohydrates by nickel/poly(o-aminophenol) modified carbon paste electrode. Electroanalysis 20:1825

    Article  CAS  Google Scholar 

  29. Zhang Y, Xu F, Sun Y, Shi Y, Wen Z, Li Z (2011) Assembly of Ni(OH)2 nanoplates on reduced graphene oxide: a two dimensional nanocomposite for enzyme-free glucose sensing. J Mater Chem 21:16949

    Article  CAS  Google Scholar 

  30. Martins PR, Rocha MA, Angnes L, Toma HE, Araki K (2011) Highly sensitive amperometric glucose sensor based on nanostructured α-Ni(OH)2 electrode. Electroanalysis 23:2541

    Article  CAS  Google Scholar 

  31. Sun JY, Huang KJ, Fan Y, Wu ZW, Li DD (2011) Glassy carbon electrode modified with a film composed of Ni(II), quercetin and graphene for enzyme-less sensing of glucose. Microchim Acta 174:289

    Article  CAS  Google Scholar 

  32. Kubota S, Nishikiori H, Tanaka N, Endo M, Fujii T (2005) Dispersion of acid-treated carbon nanofibers into gel matrices prepared by the sol–gel method. J Phys Chem B 109:23170

    Article  CAS  Google Scholar 

  33. Ramanathan T, Fisher FT, Ruoff RS, Brinson LC (2005) Amino-functionalized carbon nanotubes for binding to polymers and biological systems. Chem Mater 17:1290

    Article  CAS  Google Scholar 

  34. Bard AJ, Faulkner LR (2000) Electrochemical methods: Fundamentals and applications. John Wiley and Sons, New York

    Google Scholar 

  35. You T, Niwa O, Chen Z, Hayashi K, Tomita M, Hirono S (2003) An amperometric detector formed of highly dispersed Ni nanoparticles embedded in a graphite-like carbon film electrode for sugar determination. Anal Chem 75:5191

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors thank the National Natural Science Foundation of China (21001004) and Innovation experiment program for Anhui Normal University students (cxsy10022, cxsy11085) for the financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Yuan, Sm. & Lu, Xj. Amperometric nonenzymatic glucose sensor based on a glassy carbon electrode modified with a nanocomposite made from nickel(II) hydroxide nanoplates and carbon nanofibers. Microchim Acta 181, 365–372 (2014). https://doi.org/10.1007/s00604-013-1123-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-013-1123-3

Keywords

Navigation