Skip to main content
Log in

Highly selective piezoelectric sensor for lead(II) based on the lead-catalyzed release of gold nanoparticles from a self-assembled nanosurface

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel quartz crystal microbalance (QCM) sensor has been developed for highly selective and sensitive detection of Pb2+ by exploiting the catalytic effect of Pb2+ ions on the leaching of gold nanoparticles from the surface of a QCM sensor. The use of self-assembled gold nanoparticles (AuNPs) strongly enlarges the size of the interface and thus amplifies the analytical response resulting from the loss of mass. This results in a very low detection limit for Pb2+ (30 nM). The high selectivity is demonstrated by studying the effect of potentially interfering ions both in the absence and presence of Pb2+ ions. This simple and well reproducible sensor was applied to the determination of lead in the spiked drinking water. This work provides a novel strategy for fabricating QCM sensors towards Pb2+ in real samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. He QW, Miller EW, Wong AP, Chang CJ (2006) A selective fluorescent sensor for detecting lead in living cells. J Am Chem Soc 128:9316–9317

    Article  CAS  Google Scholar 

  2. Chen YY, Chang HT, Shiang YC, Hung YL, Chiang CK, Huang CC (2009) Colorimetric assay for lead ions based on the leaching of gold nanoparticles. Anal Chem 81:9433–9439

    Article  CAS  Google Scholar 

  3. Chang IH, Tulock JJ, Liu JW, Kim WS, Cannon DM, Lu Y, Bohn PW, Sweedler JV, Cropek DM (2005) Miniaturized lead sensor based on lead-specific DNAzyme in a manocapillary interconnected microfluidic device. Environ Sci Technol 39:3756–3761

    Article  CAS  Google Scholar 

  4. Burlingame AL, Boyd RK, Gaskell SJ (1996) Mass spectrometry. Anal Chem 68:R599–R651

    Article  Google Scholar 

  5. Faraji M, Yamini Y, Shariati S (2009) Application of cotton as a solid phase extraction sorbent for on-line preconcentration of copper in water samples prior to inductively coupled plasma optical emission spectrometry determination. J Hazard Mater 166:1383–1388

    Article  CAS  Google Scholar 

  6. Swami K, Judd CD, Orsini J (2009) Trace metals analysis of legal and counterfeit cigarette tobacco samples using inductively coupled plasma mass spectrometry and cold vapor atomic absorption spectrometry. Spectrosc Lett 42:479–490

    Article  CAS  Google Scholar 

  7. Sarret G, Manceau A, Spadini L, Roux JC, Hazemann JL, Soldo Y, Eybert-Berard L, Menthonnex JJ (1998) Structural determination of Zn and Pb binding sites in Penicillium chrysogenum cell walls by EXAFS spectroscopy. Environ Sci Technol 32:1648–1655

    Article  CAS  Google Scholar 

  8. Huang KW, Yu CJ, Tseng WL (2010) Sensitivity enhancement in the colorimetric detection of lead(II) ion using gallic acid-capped gold nanoparticles: Improving size distribution and minimizing interparticle repulsion. Biosens Bioelectron 25:984–989

    Article  CAS  Google Scholar 

  9. Liu XJ, Zhang N, Zhou J, Chang TJ, Fang CL, Shangguan DH (2013) A turn-on fluorescent sensor for zinc and cadmium ion based on perylene tetracarboxylic diimide. Analyst 138:901–906

    Article  CAS  Google Scholar 

  10. Chen CT, Huang WP (2002) A highly selective fluorescent chemosensor for lead ions. J Am Chem Soc 124:6246–6247

    Article  CAS  Google Scholar 

  11. Chen P, Greenberg B, Taghavi S, Romano C, van der Lelie D, He CA (2005) An exceptionally selective lead(II)-regulatory protein from Ralstonia metallidurans: development of a fluorescent lead(II) probe. Angew Chem 44:2715–2719

    Article  CAS  Google Scholar 

  12. Li T, Dong SJ, Wang EK (2010) A lead(II)-driven DNA molecular device for turn-on fluorescence detection of lead(II) ion with high selectivity and sensitivity. J Am Chem Soc 132:13156–13157

    Article  CAS  Google Scholar 

  13. Kim IB, Dunkhorst A, Gilbert J, Bunz UHF (2005) Sensing of lead ions by a carboxylate-substituted PPE: multivalency effects. Macromolecules 38:4560–4562

    Article  CAS  Google Scholar 

  14. Pan DW, Wang YE, Chen ZP, Lou TT, Qin W (2009) Nanomaterial/ionophore-based electrode for anodic stripping voltammetric determination of lead: an electrochemical sensing platform toward heavy metals. Anal Chem 81:5088–5094

    Article  CAS  Google Scholar 

  15. Tretjakov A, Syritski V, Reut J, Boroznjak R, Volobujeva O, Opik A (2013) Surface molecularly imprinted polydopamine films for recognition of immunoglobulin G. Microchim Acta 180:1433–1442

    Article  CAS  Google Scholar 

  16. He XH, Chen L, Xie X, Su ZH, Qin C, Liu Y, Ma M, Yao SZ, Deng L, Xie QJ, Tian Y, Qin DL, Luo YP (2012) Square wave anodic stripping voltammetric determination of lead(II) using a glassy carbon electrode modified with a lead ionophore and multiwalled carbon nanotubes. Microchim Acta 176:81–89

    Article  CAS  Google Scholar 

  17. Sauerbrey G (1959) The use of quartz oscillators for weighing thin layers and for microweighing. Z Phys 155:206–222

    Article  CAS  Google Scholar 

  18. Wang J, Zhu Z, Ma H (2013) Label-free real-time detection of DNA methylation based on quartz crystal microbalance measurement. Anal Chem 85:2096–2101

    Article  CAS  Google Scholar 

  19. Wang DZ, Tang W, Wu XJ, Wang XY, Chen GJ, Chen Q, Li N, Liu F (2012) Highly selective detection of single-nucleotide polymorphisms using a quartz crystal microbalance biosensor based on the toehold-mediated strand displacement reaction. Anal Chem 84:7008–7014

    Article  CAS  Google Scholar 

  20. Xie Y, Huang Y, Wang W, Liu G, Zhao R (2011) Dynamic interaction between melamine and cyanuric acid in artificial urine investigated by quartz crystal microbalance. Analyst 136:2482–2488

    Article  CAS  Google Scholar 

  21. Sharma H, Mutharasan R (2013) HlyA gene-based sensitive detection of Listeria monocytogenes using a novel cantilever sensor. Anal Chem 85:3222–3228

    Article  CAS  Google Scholar 

  22. Bontidean I, Ahlqvist J, Mulchandani A, Chen W, Bae W, Mehra RK, Mortari A, Csoregi E (2003) Novel synthetic phytochelatin-based capacitive biosensor for heavy metal ion detection. Biosens Bioelectron 18:547–553

    Article  CAS  Google Scholar 

  23. Sartore L, Barbaglio M, Penco M, Bergese P, Bontempi E, Colombi P, Depero LE (2009) Polymer-coated quartz crystal microbalance chemical sensor for heavy cations in water. J Nanosci Nanotechnol 9:1164–1168

    Article  CAS  Google Scholar 

  24. Huang GS, Wang MT, Su CW, Chen YS, Hong MY (2007) Picogram detection of metal ions by melanin-sensitized piezoelectric sensor. Biosens Bioelectron 23:319–325

    Article  CAS  Google Scholar 

  25. Huang H, Chen S, Liu F, Zhao Q, Liao B, Yi S, Zeng Y (2013) Multiplex plasmonic sensor for detection of different metal ions based on a single type of gold nanorod. Anal Chem 85:2312–2319

    Article  CAS  Google Scholar 

  26. Fu XL, Lou TT, Chen ZP, Lin M, Feng WW, Chen LX (2012) “Turn-on” fluorescence detection of lead ions based on accelerated leaching of gold nanoparticles on the surface of graphene. ACS Appl Mater Interfaces 4:1080–1086

    Article  CAS  Google Scholar 

  27. Aylmore MG, Muir DM (2001) Thiosulfate leaching of gold—a review. Miner Eng 14:135–174

    Article  CAS  Google Scholar 

  28. Feng D, van Deventer JSJ (2002) The role of heavy metal ions in gold dissolution in the ammoniacal thiosulphate system. Hydrometallurgy 64:231–246

    Article  CAS  Google Scholar 

  29. Zhang QD, Huang YY, Zhao R, Liu GQ, Chen Y (2008) Determining binding sites of drugs on human serum albumin using FIA-QCM. Biosens Bioelectron 24:48–54

    Article  CAS  Google Scholar 

  30. Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature 241:20–22

    CAS  Google Scholar 

  31. Bryce RA, Charnock JM, Pattrick RAD, Lennie AR (2003) EXAFS and density functional study of gold(I) thiosulfate complex in aqueous solution. J Phys Chem A 107:2516–2523

    Article  CAS  Google Scholar 

  32. Schaaff TG, Whetten RL (2000) Giant gold-glutathione cluster compounds: Intense optical activity in metal-based transitions. J Phys Chem B 104:2630–2641

    Article  CAS  Google Scholar 

  33. Hung YL, Hsiung TM, Chen YY, Huang YF, Huang CC (2010) Colorimetric detection of heavy metal ions using label-free gold nanoparticles and alkanethiols. J Phys Chem C 114:16329–16334

    Article  CAS  Google Scholar 

  34. Deschenes G, Lastra R, Brown JR, Jin S, May O, Ghali E (2000) Effect of lead nitrate on cyanidation of gold ores: progress on the study of the mechanisms. J Miner Eng 13:1263–1279

    Article  CAS  Google Scholar 

  35. Senanayake G (2008) A review of effects of silver, lead, sulfide and carbonaceous matter on gold cyanidation and mechanistic interpretation. Hydrometallurgy 90:46–73

    Article  CAS  Google Scholar 

  36. Cox MT, Hill LMR, Gahan LR (1999) Detection of lead(II) and silver(I) in aqueous solution using a piezoelectric device. Analyst 124:859–863

    Article  CAS  Google Scholar 

  37. Casilli S, Malitesta C, Conoci S, Petralia S, Sortino S, Valli L (2004) Piezoelectric sensor functionalised by a self-assembled bipyridinium derivative: characterisation and preliminary applications in the detection of heavy metal ions. Biosens Bioelectron 20:1190–1195

    Article  CAS  Google Scholar 

  38. Chen Z, Zhang N, Zhuo L, Tang B (2009) Catalytic kinetic methods for photometric or fluorometric determination of heavy metal ions. Microchim Acta 164:311–336

    Article  CAS  Google Scholar 

  39. Lou TT, Chen LX, Chen ZP (2011) Colorimetric detection of trace copper ions based on catalytic leaching of silver-coated gold nanoparticles. ACS Appl Mater Interfaces 3:4215–4220

    Article  CAS  Google Scholar 

  40. Lou XD, Zhang Y, Qin JG (2011) A highly sensitive and selective fluorescent probe for cyanide based on the dissolution of gold nanoparticles and its application in real samples. Chem Eur J 17:9691–9696

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (21375134, 21105105, 21135006 and 21321003) and Institute of Chemistry, Chinese Academy of Sciences (CMS-PY-201214).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, Y., Jin, Y., Huang, Y. et al. Highly selective piezoelectric sensor for lead(II) based on the lead-catalyzed release of gold nanoparticles from a self-assembled nanosurface. Microchim Acta 181, 1521–1527 (2014). https://doi.org/10.1007/s00604-014-1208-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-014-1208-7

Keywords

Navigation