Skip to main content

Advertisement

Log in

Electrochemical sensor for Baicalein using a carbon paste electrode doped with carbon nanotubes

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on the voltammetric determination of the flavonoid Baicalein by using a carbon paste electrode that was doped with multi-walled carbon nanotubes. The resulting sensor exhibits excellent redox activity towards Baicalein due to the large surface area and good conductivity of the electrode. Cyclic voltammetry at various scan rates was used to investigate the redox properties of Baicalein. At the optimum conditions, the sensor displays a linear current response to Baicalein in the 0.02–10 μM concentration range, with a limit of detection of 4.2 n M. The method was successfully applied to the determination of Baicalein in spiked human blood serum samples and in a Chinese oral liquid.

We construct a new voltammetric sensor, based on multi-walled carbon nanotubes (MWCNT) doped Carbon paste electrode(CPE), The proposed electrode can improve the oxidation of Baicalein intensively, which can applied to the quantitative determination of Baicalein with wide linear response and low detection limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6

Similar content being viewed by others

References

  1. Shen Y-C, Chiou W-F, Chou Y-C et al (2003) Mechanisms in mediating the anti-inflammatory effects of baicalin and baicalein in human leukocytes. Eur J Pharmacol 465:171–181

    Article  CAS  Google Scholar 

  2. Tanaka R, Tsujii H, Yamada T et al (2009) Novel 3a-methoxyserrat-14-en-21b-ol (PJ-1) and 3b-methoxyserrat-14-en-21b-ol (PJ-2)-curcumin, kojic acid, quercetin, and baicalein conjugates as HIV agents. Bioorg Med Chem 17:5238–5246

    Article  CAS  Google Scholar 

  3. Chan F-L, Choi H-L, Chen Z-Y et al (2000) Induction of apoptosisin prostate cancer cell lines by a flavonoid, baicalin. Cancer Lett 160:219–228

    Article  CAS  Google Scholar 

  4. Ikemoto S, Sugimura K, Yoshida N et al (2000) Antitumor effects of Scutellariae radix and its components baicalein, baicalin, and wogonin on bladder cancer cell lines. Urology 55:951–955

    Article  CAS  Google Scholar 

  5. Li-Weber M (2009) New therapeutic aspects of flavones: the anticancer properties of Scutellaria and its main active constituents Wogonin, Baicalein and Baicalin. Cancer Treat Rev 35:57–68

    Article  CAS  Google Scholar 

  6. Matsuzaki Y, Korokawa N, Terai S et al (1996) Cell death induced by baicalein in human hepatocellular carcinoma cell lines. Jpn J Cancer Res 87:170–177

    Article  CAS  Google Scholar 

  7. Gao Z-H, Huang K-X, Yang X-L et al (1999) Free radical scavenging and antioxidant activities of £avonoids extracted from the radix of Scutellaria baicalensis Georgi. Biochim Biophys Acta 1472:643–650

    Article  CAS  Google Scholar 

  8. Hamada H, Hiramatsu M, Edamatsu R, Mori A (1933) Free radical scavenging action of Baicalein. Arch Biochem Biophys 306:261–266

    Article  Google Scholar 

  9. Li B-X, Guo L-L, Xu C-L, Ma L-M (2008) Flow-injection chemiluminescence determination of chrysin and baicalein assisted by theoretical prediction of chemiluminescence behavior of chrysin and baicalein. Spectrochimica Acta Part A 71:892–897

    Article  Google Scholar 

  10. Okamoto M, Ohta M, Kakamu H, Omori T (1993) Evaluation of phenyldimethylethoxysilane treated high-performance thin-layer chromatographic plates. Application to analysis of flavonoids in Scutellariae radix. Chromatographia 35:281–284

    Article  CAS  Google Scholar 

  11. Kotani A, Kojima S, Hakamata H, Kusu F (2006) HPLC with electrochemical detection to examine the pharmacokinetics of baicalin and baicalein in rat plasma after oral administration of a Kampo medicine. Anal Biochem 350:99–104

    Article  CAS  Google Scholar 

  12. Zhang L, Lin G, Zuo Z (2004) High-performance liquid chromatographic method for simultaneous determination of baicalein and baicalein 7-glucuronide in rat plasma. J Pharm Biomed Anal 36:637–641

    Article  Google Scholar 

  13. Chen G, Zhang H-W, Ye J-N (2000) Determination of baicalein, baicalin and quercetin in Scutellariae Radix and its preparations by capillary electrophoresis with electrochemical detection. Talanta 53:471–479

    Article  CAS  Google Scholar 

  14. Peng Y-Y, Ding X-H, Chu Q-C et al (2003) Determination of Baicalein, Baicalin, and chlorogenic acid in Yinhuang oral liquid by capillary electrophoresis with electrochemical detection. Anal Lett 36:2793–2803

    Article  CAS  Google Scholar 

  15. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  16. Wildgoose G-G, Banks C-E, Leventis H-C, Compton R-G (2006) Chemically modified carbon nanotubes for use in electroanalysis. Microchim Acta 152:187–214

    Article  CAS  Google Scholar 

  17. Viry L, Derre A, Poulin P et al (2010) Discrimination of dopamine and ascorbic acid using carbon nanotube fiber microelectrodes. Phys Chem Chem Phys 12:9993–9995

    Article  CAS  Google Scholar 

  18. Bhambi M, Sumana G, Malhotra B-D, Pundir C-S (2010) An amperomertic uric acid biosensor based on immobilization of uricase onto polyaniline-multiwalled carbon nanotube composite film. Artif Cell Blood Substit Bio 38:178–185

    Article  CAS  Google Scholar 

  19. Rubianes M-D, Rivas G-A (2003) Carbon nanotubes paste electrode. Electrochem Commun 5:689–694

    Article  CAS  Google Scholar 

  20. Park J-A, Kim B-K, Choi H-N et al (2010) Electrochemical determination of dopamine based on carbon nanotube-sol–gel titania-nafion composite film modified electrode. Bull Kor Chem Soc 31:3123–3127

    Article  CAS  Google Scholar 

  21. Manso J, Mena M-L, Yáñez-Sedeño P et al (2007) Electrochemical biosensors based on colloidal gold–carbon nanotubes composite electrodes. J Electroanal Chem 603:1–7

    Article  CAS  Google Scholar 

  22. Adams R-N (1958) Carbon paste electrodes. Anal Chem 30:1576–1576

    Article  CAS  Google Scholar 

  23. Wang F, Zhao F-Y, Zhang Y-Z et al (2011) Sensitive voltammetric determination of baicalein at DNA Langmuir–Blodgett film modified glassy carbon electrode. Talanta 84:160–168

    Article  CAS  Google Scholar 

  24. Anson F-C (1964) Application of potentiostatic current integration to the study of the adsorption of cobalt (III)-(Ethylenedinitrilo (tetraacetate) on mercury electrodes. Anal Chem 36:932–934

    Article  CAS  Google Scholar 

  25. Yang B, Hu F-D, Wei J-P, Wang C-M (2009) Electrochemical study on Baicalein at poly-l-lysine modified glass carbon electrode. Acta Chimica Sinica 67:2585–2591

    CAS  Google Scholar 

Download references

Acknowledgments

The authors really appreciate for the financial support from the National Natural Science Foundation of China (Grant Nos. 20875083 & 20775073) and the Innovation Scientists & Technicians Troop Construction Projects of Zhengzhou City (10LJRC192).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoxian Ye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, J., Wang, F., Zhang, K. et al. Electrochemical sensor for Baicalein using a carbon paste electrode doped with carbon nanotubes. Microchim Acta 178, 179–186 (2012). https://doi.org/10.1007/s00604-012-0812-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-012-0812-7

Keywords

Navigation