Skip to main content
Log in

Single-walled carbon nanotubes-based electrochemical sensor for the electrochemical investigation of pantoprazole in pharmaceuticals and biological samples

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A novel and sensitive electrochemical sensor for the electrochemical investigation of pantoprazole (PPZ) have been established based on single-walled carbon nanotubes-modified carbon paste electrode (SWCNTs/CPE). The developed SWCNTs/CPE has been characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). An excellent electrocatalytic activity is observed for the modified electrode with respect to pantoprazole. The phosphate buffer solution (PBS) of pH 7.0 was used as an analytical medium, in which the pantoprazole exhibited well-defined oxidation peak at + 1.09 V and the process was found to be irreversible and diffusion-controlled. The effects of various experimental parameters such as pH, scan rate (υ), and concentration (C) on the voltammetric response are investigated. The electrochemical parameters such as surface concentration (Γ), electron transfer coefficient (α), and standard rate constant (k0) of pantoprazole at modified electrode have been determined. Under the optimized experimental conditions, the proposed sensor is found to exhibit a rapid response towards pantoprazole in the linear range from 10 × 10−9 to 400 × 10−9 M with low detection limit of 4.9 × 10−10 M. The analytical applicability of the proposed sensor has been successfully evaluated for the determination of pantoprazole present in pharmaceutical dosages, human serum, and urine samples with respect to sensitivity, repeatability, reproducibility, specificity, accuracy, and precision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fock KM, Ang TL, Bee LC, Lee EJD (2008) Proton pump inhibitors do differences in pharmacokinetics translate into differences in clinical outcomes. Clin Pharmacokinet 47:1–6

    Article  CAS  PubMed  Google Scholar 

  2. Richardson P, Hawkey CJ, Stack WA (1998) Proton pump inhibitors pharmacology and rationale for use in gastrointestinal disorder. Drugs 56:307–335

    Article  CAS  PubMed  Google Scholar 

  3. Radi A (2003) Determination of pantoprazole by adsorptive stripping voltammetry at carbon paste electrode. Il Farmaco 58:535–539

    Article  CAS  PubMed  Google Scholar 

  4. Leontiadis GI, Sharma VK, Howden CW (2006) Proton pump inhibitor treatment for acute peptic ulcer bleeding. Cochrane Database Syst Rev 25:CD002094

    Google Scholar 

  5. Nezhadali A, Shadmehri R (2014) Neuro-genetic multi-objective optimization and computer-aided design of pantoprazole molecularly imprinted polypyrrole sensor. Sensors Actuators B 202:240–251

    Article  CAS  Google Scholar 

  6. Bardou M, Martin J (2008) Pantoprazole: from drug metabolism to clinical relevance. Expert Opin Drug Metab Toxicol 4:471–483

    Article  CAS  PubMed  Google Scholar 

  7. Zhang Y, Shi S, Liu Y, Chen X, Peng M (2011) Differential effects of Cu(II) and Fe(III) on the binding of omeprazole and pantoprazole to bovine serum albumin: toxic effect of metal ions on drug. J Pharm Biomed Anal 56:1064–1068

    Article  CAS  PubMed  Google Scholar 

  8. Poole P (2001) Pantoprazole. Am J Health Syst Pharm 58:999–1008

    Article  CAS  PubMed  Google Scholar 

  9. Nigovic B, Hocevar SB (2013) Square-wave voltammetric determination of pantoprazole using ex situ plated antimony-film electrode. Electrochim Acta 109:818–822

    Article  CAS  Google Scholar 

  10. Noronha BV, Bindewald EH, de Oliveira MC, Papi MAP, Bergamini MF, Marcolino LH Jr (2014) Potentiometric determination of pantoprazole using an ion-selective sensor based on polypyrrole doped films. Mater Sci Eng C 43:517–520

    Article  CAS  Google Scholar 

  11. Zheng RN (2009) Comparative study of omeprazole, lansoprazole, pantoprazole and esomeprazole for symptom relief in patients with reflux esophagitis. World J Gastroenterol 15:990–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu J, Yu HY, He XH, Yin W (2008) Effects of pantoprazole and omeprazole on upper gastrointestinal haemorrhage induced by hypertensive encephalorrhagia. J Chin Gen Pract 11:2173–2174

    CAS  Google Scholar 

  13. Shavakhi A, Ataei S, Ataei M, Khodadostan M, Mohammad MR (2008) The comparison of oral omeprazole and intravenous pantoprazole effects in high risk upper gastrointestinal bleeding patients. J Isfahan Medical School (I.U.M.S) 26(90):242–248

    CAS  Google Scholar 

  14. Marques FD, Vianna-Soares CD, Nunan ED, Moreira-Campos LM (2007) A fast, validated HPLC method applied to the dissolution test of gastro-resistant capsules of pantoprazole pellets. J Liq Chromatogr Relat Technol 30:1833–1843

    Article  CAS  Google Scholar 

  15. Thanikachalam S, Rajappan M, Kannappan V (2008) Stability-indicating HPLC method for simultaneous determination of pantoprazole and domperidone from their combination drug product. Chromatographia 67:41–47

    Article  CAS  Google Scholar 

  16. Letica J, Markovic S, Zirojevic J, Nikoli K, Agbaba D (2010) High-performance liquid chromatographic determination of pantoprazole and its main impurities in pharmaceuticals. J AOAC Int 93:1121–1128

    CAS  PubMed  Google Scholar 

  17. Dotsikas Y, Apostolou C, Soumelas S, Kolocouri F, Ziaka A, Kousoulos C, Loukas JL (2010) Validation of a novel, fully automated high throughput high performance liquid chromatographic/tandem mass spectrometric method for quantification of pantoprazole in human plasma. J AOAC Int 93:1129–1136

    CAS  PubMed  Google Scholar 

  18. Li Y, Ding MJ, Ma J, Wang S, Wu XL, Xu HJ, Lu ZY, Zou JJ, Fan HW, Zhou XM (2011) Quantification of pantoprazole in human plasma using LC MS/MS for pharmacokinetics and bioequivalence study. Eur J Drug Metab Pharmacokinet 35:147–155

    Article  CAS  PubMed  Google Scholar 

  19. Noubarani M, Keyhanfar F, Motevalian M, Mahmoudian M (2011) Improved HPLC method for determination of four PPIs, omeprazole, pantoprazole, lansoprazole and rabeprazole in human plasma. J Pharm Pharm Sci 13:1–10

    Article  Google Scholar 

  20. Eberle D, Hummel RB, Kuhn R (1997) Chiral resolution of pantoprazole sodium and related sulfoxides by complex formation with bovine serum albumin in capillary electrophoresis. J Chromatogr A 759:185–192

    Article  CAS  PubMed  Google Scholar 

  21. Karljikovic-Rajic K, Novovic D, Marinkovic V, Agbaba D (2003) UV-derivative spectrophotometry in the analysis of omeprazole and pantoprazole sodium salt and corresponding impurities. J Pharm Biomed Anal 32:1019–1027

    Article  CAS  PubMed  Google Scholar 

  22. Salama F, El-Abasawy N, Razeq SAA, Ismail MMF, Fouad MM (2003) Validation of the spectrophotometric determination of omeprazole and pantoprazole sodium via their metal chelates. J Pharm Biomed Anal 33:411–421

    Article  CAS  PubMed  Google Scholar 

  23. Rahman N, Bano Z, Azmi SNH (2006) Kinetic spectrophotometric analysis of pantoprazole in commercial dosage forms. Anal Sci 22:983–988

    Article  CAS  PubMed  Google Scholar 

  24. Goyal RN, Gupta VK, Chatterjee S (2010) Voltammetric biosensors for the determination of paracetamol at carbon nanotube modified pyrolytic graphite electrode. Sensors Actuators B 149:252–258

    Article  CAS  Google Scholar 

  25. Khashaba PY, Ali HRH, El-Wekil MM (2017) Complexation based voltammetric determination of pantoprazole sodium in pharmaceutical formulations and rabbit plasma. Electroanalysis 29:890–897

    Article  CAS  Google Scholar 

  26. Tsai TH, Wang SH, Chen SM (2011) Electrodeposited indigotetrasulfonate film onto glutaraldehyde-cross-linked poly-l-lysine modified glassy carbon electrode for detection of dissolved oxygen. J Electroanal Chem 659:69–75

    Article  CAS  Google Scholar 

  27. Sivasubramanian R, Sangaranarayanan MV (2011) Detection of lead ions in pico-molar concentration range using under potential deposition on silver nanoparticles deposited glassy carbon electrodes. Talanta 85:2142–2147

    Article  CAS  PubMed  Google Scholar 

  28. Erk N (2003) Differential pulse anodic voltammetric determination of pantoprazole in pharmaceutical dosage forms and human plasma using glassy carbon electrode. Anal Biochem 323:48–53

    Article  CAS  PubMed  Google Scholar 

  29. Elsied AM, Mohamed HGG (2015) Sensitive electrochemical determination of pantoprazole sodium in pure form pharmaceutical formulations and biological fluid at glassy carbon electrode using differential pulls and square wave techniques. Int J Electrochem Sci 10:7147–7158

    Google Scholar 

  30. Foroughi MM, Beitollahi H, Tajik S, Akbari A, Hosseinzadeh R (2014) Electrochemical determination of N-acetylcysteine and folic acid in pharmaceutical and biological samples using a modified carbon nanotube paste electrode. Int J Electrochem Sci 9:8407–8421

    Google Scholar 

  31. Molaakbari E, Mostafavi A, Beitollahi H (2015) Simultaneous electrochemical determination of dopamine, melatonin, methionine and caffeine. Sensors Actuators B 208:195–203

    Article  CAS  Google Scholar 

  32. Beitollahi H, Nekooei S (2016) Application of a modified CuO nanoparticles carbon paste electrode for simultaneous determination of isoperenaline, acetaminophen and N-acetyl-L-cysteine. Electroanalysis 28:645–653

    Article  CAS  Google Scholar 

  33. Beitollahi H, Ivari SG, Torkzadeh-Mahani M (2018) Application of antibody–nanogold–ionic liquid–carbon paste electrode for sensitive electrochemical immunoassay of thyroid-stimulating hormone. Biosens Bioelectron 110:97–102

    Article  CAS  PubMed  Google Scholar 

  34. Beitollahia H, Tajik S, Maleh HK, Hosseinzadeh R (2013) Application of a 1-benzyl-4-ferrocenyl-1H-[1,2,3]-triazole/carbon nanotube modified glassy carbon electrode for voltammetric determination of hydrazine in water samples. Appl Organomet Chem 27:444–450

    Article  CAS  Google Scholar 

  35. Iijima S (1991) Helica microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  36. Beitollahi H, Karimi-Maleh H, Khabazzadeh H (2008) Nanomolar and selective determination of epinephrine in the presence of norepinephrine using carbon paste electrode modified with carbon nanotubes and novel 2-(4-oxo-3-phenyl-3,4-dihydroquinazolinyl)-N′-phenyl-hydrazinecarbothioamide. Anal Chem 80:9848–9851

    Article  CAS  PubMed  Google Scholar 

  37. Beitollahi H, Sheikhshoaie I (2012) Electrochemical behavior of carbon nanotube/Mn(III) salen doped carbon paste electrode and its application for sensitive determination of N-acetylcysteine in the presence of folic acid. Int J Electrochem Sci 7:7684–7698

    CAS  Google Scholar 

  38. Moghaddam HM, Beitollahi H, Tajik S, Sheikhshoaie I, Biparva P (2015) Fabrication of novel TiO2 nanoparticles/Mn(III) salen doped carbon paste electrode: application as electrochemical sensor for the determination of hydrazine in the presence of phenol. Environ Monit Assess 187:407

    Article  CAS  Google Scholar 

  39. Nandini S, Nalini S, Manjunatha R, Shanmugam S, Melo JS, Suresh GS (2013) Electrochemical biosensor for the selective determination of hydrogen peroxide based on the co-deposition of palladium, horseradish peroxidase on functionalized-graphene modified graphite electrode as composite. J Electroanal Chem 689:233–242

    Article  CAS  Google Scholar 

  40. Goyal RN, Singh SP (2006) Voltammetric determination of paracetamol at C60-modified glassy carbon electrode. Electrochim Acta 51:3008–3012

    Article  CAS  Google Scholar 

  41. Bayraktepe DE, Yazan Z, Polat K (2016) Sensitive and selective voltammetric determination of anti˗cancer agent shikonin on sepiolite clay/TiO2 nanoparticle/MWCNTs composite carbon paste sensor and investigation of its electro˗oxidation mechanism. J Electroanal Chem 780:38–45

    Article  CAS  Google Scholar 

  42. Saidin MI, Isa IM, Ahmad M, Hashima N, Ghani SA (2017) Analysis of trace nickel by square wave stripping voltammetry using chloropalladium(II) complex-modified MWCNTs paste electrode. Sensors Actuators B Chem 240:848–856

    Article  CAS  Google Scholar 

  43. Fu XC, Wu J, Li J, Xie CG, Liu YS, Zhong Y, Liu JH (2013) Electrochemical determination of trace copper(II) with enhanced sensitivity and selectivity by gold nanoparticle/single-wall carbon nanotube hybrids containing three-dimensional l-cysteine molecular adapters. Sensors Actuators B Chem 182:382–389

    Article  CAS  Google Scholar 

  44. Ibrahim H, Temerk Y (2015) Novel sensor for sensitive electrochemical determination of luteolin based on In2O3 nanoparticles modified glassy carbon paste electrode. Sensors Actuators B 206:744–752

    Article  CAS  Google Scholar 

  45. Lozano-Chaves ME, Palacios-Santander JM, Cubillana-Aguilera LM, Naranjo-Rodrıguez I, Hidalgo-Hidalgo-de-Cisneros JL (2006) Modified carbon-paste electrodes as sensors for the determination of 1,4-benzodiazepines: application to the determination of diazepam and oxazepam in biological fluids. Sensors Actuators B 115:575–583

    Article  CAS  Google Scholar 

  46. Kalcher K (1990) Chemically modified carbon paste in voltammetric analysis. Electroanalysis 2:419–433

    Article  CAS  Google Scholar 

  47. Zhang L, Cheng G, Fu C, Liu X, Pang X (2003) Adsorption and regeneration properties of tyrosine imprinted polymeric beads. Adsorpt Sci Technol 21:775–785

    Article  CAS  Google Scholar 

  48. Kia M, Islamnezhad A, Shariati S, Biparva P (2011) Preparation of voltammetric biosensor for tryptophan using multi-walled carbon nanotubes. Korean J Chem Eng 28:2064–2068

    Article  CAS  Google Scholar 

  49. Chethana BK, Arthoba Naik Y (2012) Electrochemical oxidation and determination of ascorbic acid present in natural fruit juices using a methionine modified carbon paste electrode. Anal Methods 4:3754–3759

    Article  CAS  Google Scholar 

  50. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamental and applications, Second addition edn. John Wiley & Sons, INC, New York

    Google Scholar 

  51. Zhang S, Wu K, Hu S (2002) Voltammetric determination of diethylstilbestrol at carbon paste electrode using cetylpyridine bromide as medium. Talanta 58:747–754

    Article  CAS  PubMed  Google Scholar 

  52. Boopathia M, Won MS, Shim YB (2004) A sensor for acetaminophen in a blood medium using a Cu(II)-conducting polymer complex modified electrode. Anal Chim Acta 512:191–197

    Article  CAS  Google Scholar 

  53. Yang H, Liu B, Ding Y, Li L, Ouyang X (2015) Fabrication of cuprous oxide nanoparticles-graphene nanocomposite for determination of acetaminophen. J Electroanal Chem 757:88–93

    Article  CAS  Google Scholar 

  54. Altınoz S, Suslu I (2005) Determination of pantoprazole in pharmaceutical formulations and human plasma by square-wave voltammetry. Anal Lett 38:1389–1404

    Article  CAS  Google Scholar 

  55. Kalambate PK, Rawool CR, Srivastava AK (2016) Voltammetric determination of pyrazinamide at graphene-zinc oxide nanocomposite modified carbon paste electrode employing differential pulse voltammetry. Sensors Actuators B 237:196–205

    Article  CAS  Google Scholar 

  56. Zhanga ML, Huang DK, Cao Z, Liu YQ, He JL, Xiong JF, Feng ZM, Yin YL (2015) Determination of trace nitrite in pickled food with a nano-composite electrode by electrodepositing ZnO and Pt nanoparticles on MWCNTs substrate. LWT–Food Sci Technol 64:663–670

    Article  Google Scholar 

  57. Nair SS, John SA, Sagara T (2009) Simultaneous determination of paracetamol and ascorbic acid using tetraoctylammonium bromide capped gold nanoparticles immobilized on 1,6-hexanedithiol modified Au electrode. Electrochim Acta 54:6837–6843

    Article  CAS  Google Scholar 

  58. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusion less electrochemical systems. J Electroanal Chem Interfacial Electrochem 101:19–28

    Article  CAS  Google Scholar 

  59. Shleev S, Tkac J, Christenson A, Alexander ITR, Yaropolov JW, Whittaker GL (2005) Direct electron transfer between copper-containing proteins and electrodes. Biosens Bioelectron 20:2517–2554

    Article  CAS  PubMed  Google Scholar 

  60. Yunhua XW, Shengshui JH (2004) Studies on electrochemical oxidation of azithromycin and its interaction with bovine serum albumin. Bioelectrochemistry 64:91–97

    Article  CAS  Google Scholar 

  61. Compton RG, Banks CE (2007) Understanding voltammetry. World Scientific Publishing Co. Pte. Ltd., London, pp 341–352

    Book  Google Scholar 

  62. Radi A (2003) Square-wave adsorptive cathodic stripping voltammetry of pantoprazole. J Pharm Biomed Anal 33:687–692

    Article  CAS  PubMed  Google Scholar 

  63. Devi OZ, Basavaiah K, Vinay KB (2010) Sensitive and selective spectrophotometric determination of pantoprazole sodium in pharmaceuticals using permanganate. Chem Ind Chem Eng Q 16:97–102

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to acknowledge the Department of Science and Technology (SERB), New Delhi, India, for providing instrumental facilities to carry out the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Arthoba Nayaka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manjunatha, P., Arthoba Nayaka, Y., Purushothama, H.T. et al. Single-walled carbon nanotubes-based electrochemical sensor for the electrochemical investigation of pantoprazole in pharmaceuticals and biological samples. Ionics 25, 2297–2309 (2019). https://doi.org/10.1007/s11581-018-2624-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2624-1

Keywords

Navigation