Skip to main content
Log in

Amperometric sensing of NADH and ethanol using a hybrid film electrode modified with electrochemically fabricated zirconia nanotubes and poly (acid fuchsin)

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on a glassy carbon electrode (GCE) modified with a film of chitosin containing acid fuchsin (AF) adsorbed onto zirconia nanotubes. The mixture was polymerized by cyclic voltammetric scannings in the potential range from - 0.8 V to +1.3 V in buffer solution to produce a hybrid film electrode (nano-ZrO2/PAF/GCE). The morphology of the hybrid film electrode surface was characterized by scanning electron microscopy. Its electrochemical properties were studied via electrochemical impedance spectroscopy. The electrochemical response of nicotinamide adenine dinucleotide (NADH) was investigated by differential pulse voltammetry and amperometry. The results indicated that the nano-ZrO2/PAF/GCE possesses well synergistic catalytic activity towards NADH. Compared to an unmodified GCE, the oxidation overpotential is negatively shifted by 224 mV, and the oxidation current is significantly increased. Under optimal conditions, the amperometric response is linearly proportional to the concentration of NADH in the 1.0 – 100.0 μM concentration range. Ethanol also can be determined by amperometry if alcohol dehydrogenase and NADH are added to the sample. Two linear relationships between current and alcohol concentration were obtained. They cover the range from 0.03 to 1.0 mM, and from 1.0 to 12.0 mM.

Figure A ZrO2 nanotubes/poly(acid fuchsin) hybrid film modified glassy carbon electrode was electrochemically fabricated. The oxidation overpotential of NADH at the developed nano-ZrO2/PAF/GCE was negatively shifed and the oxidation current was significantly increased. The nano-ZrO2/PAF/GCE was successfully applied to determine NADH and ethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Canevari TC, Vinhas RCG, Landers R, Gushikem Y (2011) SiO2/SnO2/Sb2O5 microporous ceramic material for immobilization of Meldola’s blue: application as an electrochemical sensor for NADH. Biosens Bioelectron 26:2402

    Article  CAS  Google Scholar 

  2. Tang L, Zeng GM, Shen GL, Zhang Y, Li YP, Fan CZ, Liu C, Niu CG (2009) Highly sensitive sensor for detection of NADH based on catalytic growth of Au nanoparticles on glassy carbon electrode. Anal Bioanal Chem 393:1677

    Article  CAS  Google Scholar 

  3. Thenmozhi K, Narayanan SS (2007) Amperometric hydrogen peroxide sensor based on a sol-gel-derived ceramic carbon composite electrode with toluidine blue covalently immobilized using 3-aminopropyltrimethoxysilane. Anal Bioanal Chem 387:1075

    Article  CAS  Google Scholar 

  4. Bai J, Lu BP, Bo XJ, Guo LP (2010) Electrochemical property and electroanalytical application of large mesoporous carbons. Electrochem Commun 12:1563

    Article  CAS  Google Scholar 

  5. Pandey PC, Upadhyay S, Upadhyay BC, Pathak HC (1998) Ethanol biosensors and electrochemical oxidation of NADH. Anal Biochem 260:195

    Article  CAS  Google Scholar 

  6. Barzegar A, Moosavi-Movahedi AA, Ganjali MR (2009) Amplification of electrocatalytic oxidation of NADH based on cysteine nanolayers. J Appl Electrochem 39:1111

    Article  CAS  Google Scholar 

  7. Liu Y, Zhang HL, Lai GS, Yu AM, Huang YM, Han DY (2010) Amperometric NADH biosensor based on magnetic chitosan microspheres/poly(thionine) modified glassy carbon electrode. Electroanal 22:1725

    Article  CAS  Google Scholar 

  8. Meng L, Wu P, Chen GX, Cai CX, Sun YM, Yuan ZH (2009) Low potential detection of glutamate based on the electrocatalytic oxidation of NADH at thionine/single-walled carbon nanotubes composite modified electrode. Biosens Bioelectron 24:1751

    Article  CAS  Google Scholar 

  9. Wu LN, McIntosh M, Zhang XJ, Ju HX (2007) Amperometric sensor for ethanol based on one-step electropolymerization of thionine-carbon nanofiber nanocomposite containing alcohol oxidase. Talanta 74:387

    Article  CAS  Google Scholar 

  10. Mai NN, Liu XY, Zeng XD, Xing L, Wei WZ, Luo SL (2010) Electrocatalytic oxidation of the reduced nicotinamide adenine dinucleotide at carbon ionic liquid electrode modified with polythionine/multi-walled carbon nanotubes composite. Microchim Acta 168:215

    Article  CAS  Google Scholar 

  11. Wang D, Li YG, Hasin P, Wu YY (2011) Preparation, characterization, and electrocatalytic performance of graphene–methylene blue thin films. Nano Res 4:124

    Article  CAS  Google Scholar 

  12. Liu Q, Li Y, Zhang LY, Li D, Fan CH, Long YT (2010) Comparative studies on electrocatalytic activities of chemically reduced graphene oxide and electrochemically reduced graphene oxide noncovalently functionalized with poly(methylene blue). Electroanal 22:2862

    Article  CAS  Google Scholar 

  13. Rincon RA, Artyushkova K, Mojica M, Germain MN, Minteer SD, Atanassov P (2010) Structure and electrochemical properties of electrocatalysts for NADH oxidation. Electroanal 22:799

    CAS  Google Scholar 

  14. Dai ZH, Liu FX, Lu GF, Bao JC (2008) Electrocatalytic detection of NADH and ethanol at glassy carbon electrode modified with electropolymerized films from methylene green. J Solid State Electrochem 12:175–180

    Article  CAS  Google Scholar 

  15. Chi QJ, Dong SJ (1994) Electrocatalytic oxidation of reduced nicotinamide coenzymes at Methylene Green-modified electrodes and fabrication of amperometric alcohol biosensors. Anal Chim Acta 285:125–133

    Article  CAS  Google Scholar 

  16. Lu BP, Bai J, Bo XJ, Yang L, Guo LP (2010) Electrosynthesis and efficient electrocatalytic performance of poly(neutral red)/ordered mesoporous carbon composite. Electrochim Acta 55:4647

    Article  CAS  Google Scholar 

  17. Karyakin AA, Ivanova YN, Karyakina EE (2003) Equilibrium (NAD+/NADH) potential on poly(Neutral Red) modified electrode. Electrochem Commun 5:677

    Article  CAS  Google Scholar 

  18. Dilgin DG, Gligor D, Gokcel HI, Dursun Z, Dilgin Y (2011) Glassy carbon electrode modified with poly-Neutral Red for photoelectrocatalytic oxidation of NADH. Microchim Acta 173:469

    Article  CAS  Google Scholar 

  19. Yang DW, Liu HH (2009) Poly(brilliant cresyl blue)-carbonnanotube modified electrodes for determination of NADH and fabrication of ethanol dehydrogenase-based biosensor. Biosens Bioelectron 25:733

    Article  Google Scholar 

  20. de-los-Santos-Alvarez P, Lobo-Castanon MJ, Miranda-Ordieres AJ, Tunon-Blanco P (2005) Electrocatalytic oxidation of NADH by Brilliant Cresyl Blue-DNA intercalation adduct. Electrochim Acta 50:1107

    Article  CAS  Google Scholar 

  21. Doumeche B, Blum LJ (2010) NADH oxidation on screen-printed electrode modified with a new phenothiazine diazonium salt. Electrochem Commun 12:1398

    Article  CAS  Google Scholar 

  22. Gligor D, Varodi C, Muresan LM (2010) Graphite electrode modified with a new phenothiazine derivative and with carbon nanotubes for NADH electrocatalytic oxidation. Chem Biochem Eng Q 24:159

    CAS  Google Scholar 

  23. Gao Q, Sun M, Peng P, Qi HL, Zhang CX (2010) Electro-oxidative polymerization of phenothiazine dyes into a multilayer-containing carbon nanotube on a glassy carbon electrode for the sensitive and low-potential detection of NADH. Microchim Acta 168:299

    Article  CAS  Google Scholar 

  24. Alpat S, Telefoncu A (2010) Development of an alcohol dehydrogenase biosensor for ethanol determination with toluidine blue covalently attached to a cellulose acetate modified electrode. Sens 10:748

    Article  CAS  Google Scholar 

  25. Kumar SA, Chen SM (2007) Electrocatalysis and amperometric dDetection of the reduced form of nicotinamide adenine dinucleotide at toluidine blue/zinc oxide coated electrodes. Electroanal 19:1952

    Article  CAS  Google Scholar 

  26. Tanaka K, Tokuda K, Ohsaka T (1993) An excellent electrocatalysis of poly(phenosafranine)-modified electrode for oxidation of reduced β-nicotinamide adenine dinucleotide. J Chem Soc Chem Commun 23:1770

    Article  Google Scholar 

  27. Cui L, Ai SY, Shang K, Meng XM, Wang CC (2011) Electrochemical determination of NADH using a glassy carbon electrode modified with Fe3O4 nanoparticles and poly-2, 6-pyridinedicarboxylic acid, and its application to the determination of antioxidant capacity. Microchim Aata 174:31

    Article  CAS  Google Scholar 

  28. Chen SM, Chuang GH (2005) Electropolymerization of polymerized fuchsin acid film enhanced by Nafion and their electrocatalytic properties for melatonin and DOPA. J Electroanal Chem 575:125

    Article  CAS  Google Scholar 

  29. Sun DM, Gu HY, Yu AM, Chen HY (1997) Preparation of poly(fuchsin basic) modified electrode and its application. Chem J Chin Univ 18:376

    CAS  Google Scholar 

  30. Curulli A, Valentini E, Padeletti G, Viticoli A, Caschera D, Palleschi G (2005) Smart (Nano) materials: TiO2 nanostructured films to modify electrodes for assembling of new electrochemical probes. Sens Actuator B: Chem 111:441

    Article  Google Scholar 

  31. Wang J, Musameh M (2003) Carbon nanotube/teflon composite electrochemical sensors and biosensors. Anal Chem 75:2075

    Article  CAS  Google Scholar 

  32. Tsai YC, Huang JD, Chiu CC (2007) Amperometric ethanol biosensor based on poly(vinyl alcohol)–multiwalled carbon nanotube–alcohol dehydrogenase biocomposite. Biosens Bioelectron 22:3051

    Article  CAS  Google Scholar 

  33. Zhang MG, Gorski W (2005) Electrochemical sensing platform based on the carbon nanotubes/redox mediators-biopolymer system. J Am Chem Soc 127:2058

    Article  CAS  Google Scholar 

  34. Wu BY, Hou SH, Yin F, Zhao ZX, Wang YY, Wang XS, Chen Q (2007) Amperometric glucose biosensor based on multilayer films via layer-by-layer self-assembly of multi-wall carbon nanotubes, gold nanoparticles and glucose oxidase on the Pt electrode. Biosens Bioelectron 22:2854

    Article  CAS  Google Scholar 

  35. Arvinte A, Valentini F, Radoi A, Arduini F, Tamburri E, Rotariu L, Palleschi G, Bala C (2007) The NADH electrochemical detection performed at carbon nanofibers modified glassy carbon electrode. Electroanal 19:1455

    Article  CAS  Google Scholar 

  36. Wang Y, You CP, Zhang S, Kong JL, Marty JL, Zhao DY, Liu BH (2009) Electrocatalytic oxidation of NADH at mesoporous carbon modified electrodes. Microchim Acta 167:75

    Article  CAS  Google Scholar 

  37. Jena BK, Raj CR (2006) Electrochemical biosensor based on integrated assembly of dehydrogenase enzymes and gold nanoparticles. Anal Chem 78:6332

    Article  CAS  Google Scholar 

  38. Liu XQ, Li BH, Wang X, Li CY (2010) One-step construction of an electrode modified with electrodeposited Au/SiO2 nanoparticles, and its application to the determination of NADH and ethanol. Microchim Acta 171:399

    Article  CAS  Google Scholar 

  39. Das M, Dhand C, Sumana G, Srivastava AK, Nagarajan R, Nain L, Iwamoto M, Manaka T, Malhotra BD (2011) Electrophoretic fabrication of chitosan - zirconium-oxide nanobiocomposite platform for nucleic acid detection. Biomacromol 12:540

    Article  CAS  Google Scholar 

  40. Qiao LF, Gao RF, Zheng JB (2010) Direct electrochemistry of hemoglobin immobilized on hydrophilic ionic liquid-chitosan-ZrO2 nanoparticles composite film with carbon ionic liquid electrode as the platform. Anal Sci 26:1181

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial supports from Wuhan Science and Technology Bureau (No. 201160723224), South–Central University for Nationalities (No. XTZ09005) and the Special Fund for Basic Scientific Research of Central Colleges, South−Central University for Nationalities (No. ZZZ10002) and Research foundation of State General Administration of The People’s Republic of China for Quality Supervision and Inspection and Quarantine (No. 2011IK217).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunya Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Li, B., Ma, M. et al. Amperometric sensing of NADH and ethanol using a hybrid film electrode modified with electrochemically fabricated zirconia nanotubes and poly (acid fuchsin). Microchim Acta 176, 123–129 (2012). https://doi.org/10.1007/s00604-011-0701-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-011-0701-5

Keywords

Navigation